Chang He Li
Qingdao Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chang He Li.
Key Engineering Materials | 2008
Chang He Li; Ya Li Hou; Shi Chao Xiu; Guang Qi Cai
The models for three-dimensional velocity and hydrodynamic pressure of abrasive fluid in contact zone between wheel and workpiece on abrasive jet finishing with wheel as restraint were presented based on Navier-Stokes equation and continuous formulae. The emulational results shown that the hydrodynamic pressure was proportion to grinding wheel velocity, and inverse proportion to the minimum gap between wheel and workpiece and the maximum pressure was generated just in the minimum clearance region in which higher fluid pressure gradient occur. It can also be concluded the pressure distribution was uniform in the direction of width of wheel except at the edge of wheel because of the side-leakage. The velocity in the x direction was dominant and the side-leakage in the y direction existed. The velocity in the z direction was smaller than the others because of the assumption of laminar flow. The smaller the gap distance is, the larger the velocity in the x direction. The magnitude of the velocity is also proportional to the surface velocity of the wheel.
Advanced Materials Research | 2008
Chang He Li; Ya Li Hou; Shi Chao Xiu; Guang Qi Cai
This paper describes an investigation about the grinding fluid optimization supply based on lubrication theory. The models for three-dimensional hydrodynamic flow pressure in contact zone between wheel and work are presented based on Navier-Stokes equation and continuous formulae. It is well known that hydrodynamic fluid pressure generates due to this fluid flux, and that it affects overall grinding resistance and machining accuracy. Moreover, conventional methods of delivering grinding fluid, i.e. flood delivery via a shoe or jet delivery tangential to the wheel via a nozzle, have been proved that they can not fully penetrate this boundary layer and thus, the majority of the cutting fluid is deflected away from the grinding zone. Therefore, in this paper, a new delivery method of grinding fluid, the minimum quantity lubricant (MQL)-near-dry green grinding is presented and analyzed for it not only reduces hydrodynamic lift force but also reduces grinding fluid cost to achieve green manufacturing. Experiments have been carried out to validate the performance of the MQL supply compared with conventional flood cooling. The experimental results have shown that the theoretical model is in agreement with experimental results and the model can well forecast hydrodynamic pressure distribution at contact zone between and workpiece and the MQL supply in grinding is feasible. Experiments have also been carried out to evaluate the performance of the MQL technology compared with conventional flood cooling. Experimental data indicate that the proposed method does not negatively affect to the surface integrity and the process validity has been verified.
Advances in Mechanical Engineering | 2013
Chang He Li; Jialiang Li; Sheng Wang; Qiangqiang Zhang
In this research, the heat transfer model of surface grinding temperature field with nanoparticle jet flow of MQL as well as the proportionality coefficient model of energy input workpiece was established, respectively. The numerical simulation of surface grinding temperature field of three workpiece materials was conducted. The results present that, in the workpiece, the surface temperature was significantly higher than the subsurface temperature, presenting relatively large temperature gradient along the direction of workpiece thickness. The impact of the grinding depth on grinding temperature was significant. With the increase of the cut depth, peak values of the grinding temperature rocketed. Distribution rules of the temperature field of 2Cr13 in four cooling and lubrication approaches were the same. Based on the excellent heat transfer property of nanofluids, the output heat through the grinding medium acquired an increasingly high proportion, leading to the drop of the temperature in the grinding zone. For the same cooling and lubrication conditions, grinding temperature presented insignificant changes along the direction of grinding width. Yet, under different cooling conditions, the temperature variation was significant. MQL grinding conditions with additive nanoparticles demonstrated great impact on the weakening of temperature effect on the grinding zone.
Key Engineering Materials | 2006
Shi Chao Xiu; Guang Qi Cai; Chang He Li
Ultra-high grinding speed and point contact are the salient natures of Quick-point grinding. Based on the damage dynamics theory, there are impact damages with a lot of micro-cracks and micro-defects and adiabatic shearing caused by ultra-high strain rate in the contact layer in such grinding manner. The micro-damages are relation to the strain rate and the materials properties, and increase with raise of strain rate. Because of the weakening effect of strain rate, the dynamic strength of the contact layer in Quick-point grinding is decreased and the grinding performance of ductile and brittle materials is also changed. The dynamic strength model of the contact layer in Quick-point grinding was built in this paper, and the weakening effects of strain rate caused by impact micro-damages on the dynamic strength of the layer and the materials removal mechanism in grinding layer were analyzed through the study on the theory and the experiments.
Key Engineering Materials | 2006
Chang He Li; Guang Qi Cai; Shi Chao Xiu; Q. Li
The material removal rate (MRR) model was investigated in abrasive jet precision finishing (AJPF) with wheel as restraint. When abrasive wore and workpiece surface micro-protrusion removed, the size ratio for characteristic particle size to minimum film thickness gradually diminishing, the abrasive machining from two-body lapping to three-body polishing transition in AJPF with grinding wheel as restraint. In the study, the material removal rate model was established according to machining mechanisms and machining modes from two-body to three-body process transition condition, and active number of particles in grinding zone were calculated and simulated. Experiments were performed in the plane grinder for material removal mechanism and academic models verification. It can be observed from experimental results that the surface morphology change dramatically to a grooved or micro-machined surface with all the grooves aligned in the sliding direction in two-body lapping mode. On the other hand, the surface is very different, consists of a random machining pits with very little sign of any directionality to the deformation in the three-body machining mode. Furthermore, the material removal rate model was found to give a good description of the experimental results.
Advances in Mechanical Engineering | 2013
Chang He Li; Z. L. Han; Qiang Zhang; Sheng Wang
Solid nano particles were added in minimum quantity lubrication (MQL) fluid medium to make nanofluids, that is, after the mixing and atomization of nanoparticle, lubricants and high pressure gas, to inject solid nano particle in the grinding zone with the form of jet flow. The mathematical model of two-phase flow pressure field of grinding zone with nanoparticle jet flow of MQL was established, and the simulation study was conducted. The results show that pressures in the grinding zone increased with the acceleration of grinding wheel, sharply decreased with the increased minimum clearance, and increased with the acceleration of jet flow. At three spraying angles of nozzles, when the nozzle angle was 15°, the pressure of grinding zone along the speed of grinding wheel was larger than the rest two angles. On the experimental platform built by KP-36 precision grinder and nanoparticle jet flow feed way, CY3018 pressure sensor was used to test the regularities of pressure field variations. The impact of the speed of grinding wheel, the gap between workpiece and grinding wheel, jet flow velocity, and spraying angles of nozzles on the pressure field of grinding zone was explored. The experimental result was generally consistent with the theoretical simulation, which verified the accuracy of the theoretical analysis.
Archive | 2011
Chang He Li; Z. L. Han; Chao Du; Yucheng Ding
Based on the transfer-matrix method and taking into consideration the gyroscopic couple, the shear, the variable cross-section and other influential factors, a critical speed model was established for the multi-disk rotor of the rotor-bearing system of the grinder spindle. The critical speeds of first three orders, the modes of variation and other dynamic characteristic parameters of the grinder spindle were numerical investigated and calculated. The influences of the axial pre-tightening force of the bearing, the span of the fulcrum bearing as well as the changes in the front and rear overhangs on the critical speed of the rotor-bearing system on the grinder spindle and their pattern of changes were analyzed. The results showed that the working speed of the spindle system is much lower than the primary critical speed and can therefore stay away the resonance range effectively. Furthermore, the span of the fulcrum bearing and the overhang had significant influences on the critical speed within a certain range, and the study provided the basis and guidance for the structural design and performance optimization of the grinder spindle.
Key Engineering Materials | 2007
Chang He Li; Guang Qi Cai; Shi Chao Xiu; Feng Liu
Surface microcosmic topography finished by abrasive jet with grinding wheel as restraint was analyzed and evaluated. Generating mechanism of surface morphology finished by abrasive jet with grinding wheel as restraint was investigated and surface topographical characteristics were also evaluated with cross correlation of random process. Experiments were performed with plane grinder M7120 and workpiece material 45# steel which was ground with the surface roughness values of Ra=0.20.6m. The machined surface morphology was studied using SEM and microscope and the microcosmic geometry parameters were measured with TALYSURF5 instrument. The experimental results shown that the machined surface change from continuous and parallel micro-groove and plough to randomly discontinuous micro-pit can be observed with machining circles increasing and surface roughness was obviously improved. Furthermore, The finished surface has little comparability compared to grinding machining surface.The isotropy surface and uniformity veins both parallel and perpendicular machining direction were attained by abrasive jet precision finishing with grinding wheel as restraint.
Noise & Vibration Worldwide | 2011
Chang He Li; Z. R. Liu; Y. Zhou; Yucheng Ding
The influences of the grinder spindles major structural parameters on its vibration mode were investigated. Based on the transfer-matrix method and taking into consideration the gyroscopic couple, the shear, the variable cross-section and other influential factors, a dynamic model was established for the multi-disk rotor of the rotor-bearing system of the grinder spindle. The critical speeds of first three orders, the modes of variation and other dynamic characteristic parameters of the grinder spindle were programmed and calculated. The influences of the axial pre-tightening force of the bearing, the span of the fulcrum bearing as well as the changes in the front and rear overhangs on the critical speed of the rotor-bearing system on the grinder spindle and their pattern of changes were analyzed. The results showed that the working speed of the spindle system is much lower than the primary critical speed and can therefore stay away the resonance range effectively.
Advanced Materials Research | 2010
Chang He Li; Chao Du; Guo Yu Liu; Yan Zhou
In the grinding process, conventional method of flood delivering coolant fluid by a nozzle in order to achieve chip flushing, cooling, lubrication and chemical protection of work surface. However the conventional flood supply system demands more resources for operation, maintenance, and disposal, and results in higher environmental and health problems. Therefore, there are critical needs to reduce the use of cutting fluid in grinding process, and MQCL grinding is a promising solution. MQCL grinding refers to the use of cutting fluids of only a minute amount typically of a flow rate of 10 to 100 ml/hour which is about hundreds orders of magnitude less than the amount commonly used in flood cooling condition. The evaluation of the performance of the MQCL technique in grinding consisted of analyzing the behavior of the tangential cutting force, G-ratio, Surface morphology and roughness. The results presented here are expected to lead to technological and ecological gains in the grinding process using MQCL.