Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chang-Hee Kang is active.

Publication


Featured researches published by Chang-Hee Kang.


International Immunopharmacology | 2013

Hydrangenol inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-mediated HO-1 pathway

Hee-Ju Kim; Chang-Hee Kang; Rajapaksha Gedara Prasad Tharanga Jayasooriya; Matharage Gayani Dilshara; Seungheon Lee; Yung Hyun Choi; Yong Taek Seo; Gi-Young Kim

Abnormal nitrosative stress-induced neuroinflammation is implicated in the pathogenesis of neurodegenerative diseases. Therefore, it has been thought that nitric oxide (NO) production is a good therapeutic target. In this sense, quercetin is a good chemopreventive component, because it has free radical-scavenging and anti-inflammatory activities. However, explicit mechanisms are not clear in the lipopolysaccharide (LPS)-stimulated BV2 microglial cell line. Here, we found that quercetin significantly suppressed LPS-induced NO production and inducible NO synthase (iNOS) expression. Notably, quercetin inhibited nuclear factor-κB (NF-κB) activation by inhibiting degradation of the inhibitor of kappa Bα (IκBα) in LPS-stimulated BV2 microglial cells corresponding to the inhibitory effect of specific NF-κB inhibitors, namely proteasome inhibitor I (PSI) and MG132. Quercetin caused significant increases in the levels of heme oxgenase-1 (HO-1) mRNA and protein. Notably, treatment with an HO-1 inducer, cobalt protoporphyrin (CoPP), significantly diminished LPS-stimulated NO production. Additionally, quercetin induced the specific DNA-binding activity of nuclear factor-2-erythroid 2-related factor 2 (Nrf2), and siRNA-mediated knockdown of Nrf2 expression reduced the inhibitory effect of quercetin on LPS-stimulated NO production by inhibiting HO-1 expression, indicating that quercetin regulated NO production by inducing Nrf2-mediated HO-1 expression. Therefore, quercetin has the potential to decrease nitrosative stress by suppressing NF-κB activation and inducing Nrf2-mediated HO-1 expression.


Food and Chemical Toxicology | 2012

Caffeine suppresses lipopolysaccharide-stimulated bv2 microglial cells by suppressing akt-mediated nf-κb activation and erk phosphorylation

Chang-Hee Kang; Rajapaksha Gendara Prasad Tharanga Jayasooriya; Matharage Gayani Dilshara; Yung Hyun Choi; Yong-Kee Jeong; Nam Deuk Kim; Gi-Young Kim

Since the anti-inflammatory effect of caffeine is unclear in microglial cells, we performed whether caffeine attenuates the expression of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Caffeine substantially suppressed the LPS-induced pro-inflammatory mediators nitric oxide (NO), prostaglandin E(2) (PGE(2)) and tumor necrosis factor-α (TNF-α) in BV2 microglial cells. These effects resulted from the inhibition of their regulatory genes inducible NO synthase (iNOS), cycloxygenase-2 (COX-2) and TNF-α. In addition, caffeine significantly decreased LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) by suppressing the nuclear translocation of p50 and p65 subunits. A specific NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), attenuated the LPS-induced expression of iNOS, COX-2 and TNF-α genes. In addition, we elucidated that inhibition of Akt phosphorylation plays a crucial role in caffeine-mediated NF-κB regulation in LPS-stimulated BV2 microglial cells. Caffeine also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK) and a specific inhibitor of ERK, PD98059, subsequently downregulated the expression of the pro-inflammatory genes iNOS, COX-2 and TNF-α. Taken together, our data indicate that caffeine suppresses the generation of pro-inflammatory mediators, such as NO, PGE(2) and TNF-α as well as their regulatory genes in LPS-stimulated BV2 microglial cells by inhibiting Akt-dependent NF-κB activation and the ERK signaling pathway.


Toxicology and Applied Pharmacology | 2012

Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca2+ influx

Dong-Oh Moon; Chang-Hee Kang; Sang-Hyuck Kang; Yung Hyun Choi; Jin-Won Hyun; Weon-Young Chang; Hee-Kyoung Kang; Young-Sang Koh; Young-Hee Maeng; Young Ree Kim; Gi-Young Kim

Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation.


Molecular Cancer Therapeutics | 2010

β-Ionone Enhances TRAIL-Induced Apoptosis in Hepatocellular Carcinoma Cells through Sp1-Dependent Upregulation of DR5 and Downregulation of NF-κB Activity

Mun-Ock Kim; Dong-Oh Moon; Chang-Hee Kang; Taeg Kyu Kwon; Yung Hyun Choi; Gi-Young Kim

β-Ionone (ION), an end-ring analogue of β-carotenoid, has been known to inhibit tumor cell growth and induce apoptosis in various types of cancer cells. Nevertheless, its apoptosis-related molecular mechanisms remain unclear. Here, we first investigated the molecular mechanisms by which ION sensitizes cancer cells to the therapeutic potential of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL). Notably, treatment with subtoxic concentrations of ION and TRAIL effectively inhibited cell viability in the hepatocellular carcinoma cell line Hep3B and other cancer cell lines such as colon carcinoma cell line HCT116 and leukemia cell line U937. Combined treatment with ION and TRAIL was also more effective in inducing DR5 expression, caspase activities, and apoptosis than treatment with either agent alone. ION-mediated sensitization to TRAIL was efficiently reduced by treatment with a chimeric blocking antibody or small interfering RNA specific for DR5. Electrophoretic mobility shift assay and a chromatin immunoprecipitation assay confirmed that ION treatment upregulates the binding of transcription factor Sp1 to its putative site within the DR5 promoter region, suggesting that Sp1 is an ION-responsive transcription factor. In addition, ION significantly increased hepatocellular carcinoma cell sensitivity to TRAIL by abrogating TRAIL-induced NF-κB activation and decreasing the expression of antiapoptotic proteins such as XIAP and IAP-1/2. Taken together, these data suggest that ION is a useful agent for TRAIL-based cancer treatments. Mol Cancer Ther; 9(4); 833–43. ©2010 AACR.


Toxicology in Vitro | 2011

Piceatannol enhances TRAIL-induced apoptosis in human leukemia THP-1 cells through Sp1- and ERK-dependent DR5 up-regulation.

Chang-Hee Kang; Dong-Oh Moon; Yung Hyun Choi; Il-Whan Choi; Sung-Kwon Moon; Wun-Jae Kim; Gi-Young Kim

Although piceatannol (PIC) is known to mediate anti-cancer, anti-inflammatory, and anti-oxidant activities, little is known about the mechanism of PIC in terms of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. In this study, we examined whether combined treatment with PIC and TRAIL synergistically induces apoptosis in THP-1 leukemia cells. Results indicate that PIC substantially enhances TRAIL-induced cell death including DNA fragmentation and poly(ADP-ribose) polymerase cleavage. Consistent with TRAIL-induced apoptosis, PIC significantly increased the mRNA and protein expression levels of DR5, a death receptor of TRAIL. Further, PIC enhanced DR5 promoter activity via Sp1 activation. Interestingly, the DR5 chimera antibodies significantly suppressed PIC and TRAIL-mediated apoptosis. The inhibitor of ERK also decreased PIC and TRAIL-induced apoptosis by blocking DR5 expression. In conclusion, our results suggest that PIC sensitizes TRAIL-induced-apoptosis via Sp1- and ERK-dependent DR5 up-regulation.


Journal of Biochemistry and Molecular Biology | 2015

Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity

Matharage Gayani Dilshara; Chang-Hee Kang; Yung Hyun Choi; Gi-Young Kim

We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression. [BMB Reports 2015; 48(10): 559-564]


Food and Chemical Toxicology | 2012

Apigenin decreases cell viability and telomerase activity in human leukemia cell lines.

R.G.P.T. Jayasooriya; Sang-Hyuck Kang; Chang-Hee Kang; Yung Hyun Choi; Dong-Oh Moon; Jin-Won Hyun; Weon-Young Chang; Gi-Young Kim

Recent studies have shown that apigenin (4,5,7-trihydroxyflavone inhibits human malignant cancer cell growth through cell cycle arrest and apoptosis. However, the underlying relationship between apoptosis and telomerase activity in response to apigenin exposure is not well understood. In this study, we found that apigenin significantly induces direct cytotoxicity in human leukemia cells (U937, THP-1 and HL60) through activation of the caspase pathway. As we presumed, treatment with apigenin was found to increase the level of intracellular reactive oxygen species (ROS), whereas pretreatment with antioxidants, N-acetyl-cysteine (NAC) or glutathione (GSH), completely attenuated ROS generation. Surprisingly, these antioxidants did not promote recuperation from apigenin-induced cell death. We further showed that apigenin downregulates telomerase activity in caspase-dependent apoptosis and observed that apigenin dosing results in downregulation of telomerase activity by suppression of c-Myc-mediated telomerase reverse transcriptase (hTERT) expression. In addition, treatment of apigenin-dosed cells with the two antioxidants did not restore telomerase activity. Taken together, this data suggests that ROS is not essential for suppression of apigenin-mediated apoptosis associated with the activation of caspases and regulation of telomerase activity via suppression of hTERT. We conclude that apigenin has a direct cytotoxic effect and the loss of telomerase activity in leukemia cells.


Journal of Medicinal Food | 2012

Anti-inflammatory effects of methanol extract of Codium fragile in lipopolysaccharide-stimulated RAW 264.7 cells.

Chang-Hee Kang; Yung Hyun Choi; Sung-Yong Park; Gi-Young Kim

The methanol extract of Codium fragile (MECF) has been reported to possess bioactive properties such as antidegranulation in eosinophils, as well as anti-edema, antibacterial, and antiviral activities. However, little is known about the molecular effects of MECF on lipopolysaccharide (LPS)-induced inflammation. Therefore, we investigated whether MECF affects the expression of inflammatory mediators in LPS-stimulated RAW 264.7 cells. To evaluate the anti-inflammatory effects of MECF, the cells were pretreated with MECF for 1 hour and then cultured with LPS for 24 hours. Our results indicate that MECF significantly attenuated secretion of LPS-induced inflammatory mediators nitric oxide (NO), prostaglandin E(2) (PGE(2)), and tumor necrosis factor (TNF)-α in RAW 264.7 cells. Additionally, LPS-induced mRNA and protein expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and TNF-α was decreased by pretreatment with MECF. These data indicate that MECF attenuates the expression of these inflammatory mediators at the transcriptional level. Therefore, we also investigated the effects of MECF on nuclear factor-κB (NF-κB) activity, which may be an important transcriptional factor for regulating the expression of iNOS, COX-2, and TNF-α mRNA. Our results showed that MECF reduced LPS-induced NF-κB activity via the suppression of nuclear translocation of the p50 and p65 NF-κB subunits and degradation of inhibitor of κB. In conclusion, we propose that MECF treatment down-regulates the expression and secretion of LPS-induced inflammatory mediators by inhibiting NF-κB activity.


Experimental and Molecular Medicine | 2009

JNK inhibitor SP600125 promotes the formation of polymerized tubulin, leading to G2/M phase arrest, endoreduplication, and delayed apoptosis.

Dong-Oh Moon; Mun-Ock Kim; Chang-Hee Kang; Jae-Dong Lee; Yung Hyun Choi; Gi-Young Kim

The JNK inhibitor SP600125 strongly inhibits cell proliferation in many human cancer cells by blocking cell-cycle progression and inducing apoptosis. Despite extensive study, the mechanism by which SP600125 inhibits mitosis-related effects in human leukemia cells remains unclear. We investigated the effects of SP600125 on the inhibition of cell proliferation and the cell cycle, and on microtubule dynamics in vivo and in vitro. Treatment of synchronized leukemia cells with varying concentrations of SP600125 results in significant G2/M cell cycle arrest with elevated p21 levels, phosphorylation of histone H3 within 24 h, and endoreduplication with elevated Cdk2 protein levels after 48 h. SP600125 also induces significant abnormal microtubule dynamics in vivo. High concentrations of SP600125 (200 µM) were required to disorganize microtubule polymerization in vitro. Additionally, SP600125-induced delayed apoptosis and cell death was accompanied by significant poly ADP-ribose polymerase (PARP) cleavage and caspase-3 activity in the late phase (at 72 h). Endoreduplication showed a greater increase in ectopic Bcl-2-expressing U937 cells at 72 h than in wild-type U937 cells without delayed apoptosis. These results indicate that Bcl-2 suppresses apoptosis and SP600125-induced G2/M arrest and endoreduplication. Therefore, we suggest that SP600125 induces mitotic arrest by inducing abnormal spindle microtubule dynamics.


International Immunopharmacology | 2014

Downregulation of NO and PGE2 in LPS-stimulated BV2 microglial cells by trans-isoferulic acid via suppression of PI3K/Akt-dependent NF-κB and activation of Nrf2-mediated HO-1.

Matharage Gayani Dilshara; Kyoung-Tae Lee; Rajapaksha Gedara Prasad Tharanga Jayasooriya; Chang-Hee Kang; Sang Rul Park; Yung Hyun Choi; Il-Whan Choi; Jin-Won Hyun; Weon-Young Chang; Yeon-Su Kim; Hak-Ju Lee; Gi-Young Kim

Little is known about whether trans-isoferulic acid (TIA) regulates the production of lipopolysaccharide (LPS)-induced proinflammatory mediators. Therefore, we examined the effect of TIA isolated from Clematis mandshurica on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in BV2 microglial cells. We found that TIA inhibited the production of LPS-induced NO and PGE2 without accompanying cytotoxicity in BV2 microglial cells. TIA also downregulated the expression levels of specific regulatory genes such as inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) by suppressing LPS-induced NF-κB activity via dephosphorylation of PI3K/Akt. In addition, we demonstrated that a specific NF-κB inhibitor PDTC and a selective PI3K/Akt inhibitor, LY294002 effectively attenuated the expression of LPS-stimulated iNOS and COX-2 mRNA, while LY294002 suppressed LPS-induced NF-κB activity, suggesting that TIA attenuates the expression of these proinflammatory genes by suppressing PI3K/Akt-mediated NF-κB activity. Our results showed that TIA suppressed NO and PGE2 production through the induction of nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent heme oxygenase-1 (HO-1). Taken together, our data indicate that TIA suppresses the production of proinflammatory mediators such as NO and PGE2, as well as their regulatory genes, in LPS-stimulated BV2 microglial cells, by inhibiting PI3K/Akt-dependent NF-κB activity and enhancing Nrf2-mediated HO-1 expression.

Collaboration


Dive into the Chang-Hee Kang's collaboration.

Top Co-Authors

Avatar

Gi-Young Kim

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-Oh Moon

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mun-Ock Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Jae-Dong Lee

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge