Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chang-Ping Hu is active.

Publication


Featured researches published by Chang-Ping Hu.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Small Concentrations of oxLDL Induce Capillary Tube Formation From Endothelial Cells via LOX-1–Dependent Redox-Sensitive Pathway

Abhijit Dandapat; Chang-Ping Hu; Liuqin Sun; Jawahar L. Mehta

Objective—Vascular endothelial growth factor (VEGF), a key angiogenic growth factor, stimulates angiogenesis. Low levels of reactive oxygen species (ROS) function as signaling molecules for angiogenesis. We postulated that low concentrations of oxLDL might induce low levels of ROS and initiate angiogenesis. Methods and Results—An in vitro model of tube formation from human coronary artery endothelial cells (HCAECs) was used. oxLDL (0.1, 1, 2, 5 &mgr;g/mL) induced VEGF expression and enhanced tube formation. oxLDL-mediated VEGF expression and tube formation were suppressed by a specific blocking anti–LOX-1 antibody. Anti–LOX-1 antibody also reduced oxLDL-induced increase in the expression of NADPH oxidase (gp91phox and p47phox subunits) and subsequent intracellular ROS generation, phosphorylation of p38 as well as p44/42MAPK, and NF-&kgr;B p65 expression. gp91phox siRNA had a similar effect. The expression of VEGF and NF-&kgr;B p65 induced by oxLDL was also inhibited by the specific extracellular signal-regulated kinase (ERK) 1/2 inhibitor U0126 and the p38 MAPK inhibitor SB203580. Importantly, the NADPH oxidase inhibitor apocynin, gp91phox siRNA, U0126, and SB203580 all reduced tube formation in response to oxLDL. Conclusions—These findings suggest that small concentrations of oxLDL promote capillary tube formation by inducing the expression of VEGF via LOX-1-mediated activation of NADPH oxidase- MAPKs-NF-&kgr;B pathway.


Cardiovascular Research | 2008

LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high-cholesterol diet.

Chang-Ping Hu; Abhijit Dandapat; Liuqin Sun; Jiawei Chen; Muhammad R. Marwali; Francesco Romeo; Tatsuya Sawamura; Jawahar L. Mehta

AIMS Collagen, as a component of the extracellular matrix, has been linked to atherosclerotic plaque formation and stability. Activation of LOX-1, a lectin-like oxidized low-density lipoprotein (LDL) receptor-1, exerts a significant role in collagen formation. We examine the hypothesis that LOX-1 deletion may inhibit collagen accumulation in atherosclerotic arteries in LDL receptor (LDLR) knockout (KO) mice. METHODS AND RESULTS We generated LOX-1 KO and LOX-1/LDLR double KO mice on a C57BL/6 (wild-type mice) background and fed a 4% cholesterol/10% cocoa butter diet for 18 weeks. Vessel wall collagen accumulation was increased in association with atherogenesis in the LDLR KO mice (P < 0.01 vs. wild-type mice), but much less so in the double KO mice (P < 0.01 vs. LDLR KO mice). Collagen accumulation data were corroborated with pro-collagen I measurements. Expression/activity of osteopontin, fibronectin, and matrix metalloproteinases (MMP-2 and MMP-9) was also increased in the LDLR KO mice (P < 0.01 vs. wild-type mice), but not in the mice with LOX-1 deletion (P < 0.01 vs. LDLR KO mice). The expression of NADPH oxidase (p47(phox), p22(phox), gp91(phox), and Nox-4 subunits) and nitrotyrosine was increased in the LDLR KO mice (P < 0.01 vs. wild-type mice) and not in mice with LOX-1 deletion (P < 0.01 vs. LDLR KO mice). Phosphorylation of Akt-1 and endothelial nitric oxide synthase and expression of haem-oxygenase-1 were found to be reduced in the LDLR KO mice (P < 0.01 vs. wild-type mice), but not in the mice with LOX-1 deletion (P < 0.01 vs. LDLR KO mice). CONCLUSION LOX-1 deletion reduces enhanced collagen deposition and MMP expression in atherosclerotic regions via inhibition of pro-oxidant signals.


European Journal of Pharmacology | 2001

Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide

Liang Xiao; Rong Lu; Chang-Ping Hu; Han-Wu Deng; Yuan-Jian Li

Previous studies have shown that nitric oxide and calcitonin gene-related peptide (CGRP) are involved in mediation of the delayed cardioprotection of ischemic or pharmacological preconditioning, and nitric oxide can evoke the release of CGRP. In the present study, we examined the role of CGRP in nitric oxide-mediated delayed cardioprotection by brief intestinal ischemia in rats. The serum concentration of creatine kinase and infarct size were measured after 45-min coronary artery occlusion and 180-min reperfusion. Ischemic preconditioning was induced by six cycles of 4-min ischemia and 4-min reperfusion of the small intestine. Pretreatment with intestinal ischemic preconditioning for 24, 48, or 72 h significantly reduced infarct size and creatine kinase release, and the effects of ischemic preconditioning were completely abolished by L-nitroarginine methyl ester (L-NAME, 10 mg/kg, i.p.), an inhibitor of nitric oxide synthase, or by pretreatment with capsaicin (50 mg/kg, s.c.), which selectively depletes transmitters in capsaicin-sensitive sensory nerves. Intestinal preconditioning caused a significant increase in plasma concentrations of CGRP, and the effect was also abolished by L-NAME or capsaicin. These results suggest that the delayed cardioprotection afforded by intestinal ischemic preconditioning is mediated by endogenous CGRP via the nitric oxide pathway.


Cardiovascular Research | 2011

Involvement of vascular peroxidase 1 in angiotensin II-induced vascular smooth muscle cell proliferation

Ruizheng Shi; Chang-Ping Hu; Qiong Yuan; Tianlun Yang; Jun Peng; Yuan-Jian Li; Yong-Ping Bai; Zehong Cao; Guangjie Cheng; Guo-Gang Zhang

AIMS Vascular peroxidase 1 (VPO1) is a newly identified haem-containing peroxidase that catalyses the oxidation of a variety of substrates by hydrogen peroxide (H(2)O(2)). Considering the well-defined effects of H(2)O(2) on the vascular remodelling during hypertension, and that VPO1 can utilize H(2)O(2) generated from co-expressed NADPH oxidases to catalyse peroxidative reactions, the aims of this study were to determine the potential role of VPO1 in vascular remodelling during hypertension. METHODS AND RESULTS The vascular morphology and the expression of VPO1 in arterial tissues of spontaneously hypertensive rats and Wistar-Kyoto rats were assessed. The VPO1 expression was significantly increased concomitantly with definite vascular remodelling assessed by evaluating the media thickness, lumen diameter, media thickness-to-lumen diameter ratio and mean nuclear area in artery media in spontaneously hypertensive rats. In addition, in cultured rat aortic smooth muscle cells we found that the angiotensin II-mediated cell proliferation was inhibited by knockdown of VPO1 using small hairpin RNA. Moreover, the NADPH oxidase inhibitor, apocynin, and the hydrogen peroxide scavenger, catalase, but not the ERK1/2 inhibitor, PD98059, attenuated angiotensin II-mediated up-regulation of VPO1 and generation of hypochlorous acid. CONCLUSION VPO1 is a novel regulator of vascular smooth muscle cell proliferation via NADPH oxidase-H(2)O(2)-VPO1-hypochlorous acid-ERK1/2 pathways, which may contribute to vascular remodelling in hypertension.


Hypertension | 2008

Modulation of Angiotensin II–Mediated Hypertension and Cardiac Remodeling by Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Deletion

Chang-Ping Hu; Abhijit Dandapat; Liuqin Sun; Muhammad R. Marwali; Nobutaka Inoue; Fumiaki Sugawara; Kazuhiko Inoue; Yosuke Kawase; Kou-ichi Jishage; Hiroshi Suzuki; Paul L. Hermonat; Tatsuya Sawamura; Jawahar L. Mehta

Angiotensin II via type 1 receptor activation upregulates the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and LOX-1 activation, in turn, upregulates angiotensin II type 1 receptor expression. We postulated that interruption of this positive feedback loop might attenuate the genesis of angiotensin II–induced hypertension and subsequent cardiac remodeling. To examine this postulate, LOX-1 knockout and wild-type mice were infused with angiotensin II or norepinephrine (control for angiotensin II) for 4 weeks. Angiotensin II–, but not norepinephrine-, induced hypertension was attenuated in LOX-1 knockout mice. Angiotensin II–induced cardiac remodeling was also attenuated in LOX-1 knockout mice. Importantly, angiotensin II type 1 receptor expression was reduced, and the expression and activity of endothelial NO synthase were preserved in the tissues of LOX-1 knockout mice given angiotensin II. Reactive oxygen species generation, nicotinamide-adenine dinucleotide phosphate oxidase expression, and phosphorylation of p38 and p44/42 mitogen-activated protein kinases were also much less pronounced in the LOX-1 knockout mice given angiotensin II. These alterations in biochemical and structural abnormalities were associated with preservation of cardiac hemodynamics in the LOX-1 knockout mice. To confirm that fibroblast function is modulated in the absence of LOX-1, cardiac fibroblasts from wild-type and LOX-1 knockout mice were treated with angiotensin II. Indeed, LOX-1 knockout mice cardiac fibroblasts revealed an attenuated profibrotic response on treatment with angiotensin II. These observations provide strong evidence that LOX-1 is a key modulator of the development of angiotensin II–induced hypertension and subsequent cardiac remodeling.


Journal of Biological Chemistry | 2008

Regulation of TGFβ1-mediated Collagen Formation by LOX-1 Studies Based on Forced Overexpression of TGFβ1 in Wild-Type and Lox-1

Chang-Ping Hu; Abhijit Dandapat; Liuqin Sun; Junaid Khan; Yong Liu; Paul L. Hermonat; Jawahar L. Mehta

Transforming growth factor beta(1) (TGFbeta(1)) activation leads to tissue fibrosis. Here, we report on the role of LOX-1, a lectin-like 52-kDa receptor for oxidized low density lipoprotein, in TGFbeta(1)-mediated collagen expression and underlying signaling in mouse cardiac fibroblasts. TGFbeta(1) was overexpressed in wild-type (WT) and LOX-1 knock-out mouse cardiac fibroblasts by transfection with adeno-associated virus type 2 vector carrying the active TGFbeta(1) moiety (AAV/TGFbeta (ACT)(1)). Transfection of WT mouse cardiac fibroblasts with AAV/TGFbeta (ACT)(1) markedly enhanced the expression of NADPH oxidases (p22(phox), p47(phox), and gp91(phox) subunits) and LOX-1, formation of reactive oxygen species, and collagen synthesis, concomitant with an increase in the activation of p38 and p44/42 mitogen-activated protein kinases (MAPK). The TGFbeta(1)-mediated increase in collagen synthesis was markedly attenuated in the LOX-1 knock-out mouse cardiac fibroblasts as well as in WT mouse cardiac fibroblasts treated with a specific anti-LOX-1 antibody. Treatment with anti-LOX-1 antibody also reduced NADPH oxidase expression and MAPK activation. The NADPH oxidase inhibitors and gp91phox small interfering RNA reduced LOX-1 expression, MAPK activation, and collagen formation. The p38 MAPK inhibitors as well as the p44/42 MAPK inhibitors reduced collagen formation without affecting LOX-1 expression in cardiac fibroblasts. These observations suggest that collagen synthesis in cardiac fibroblasts involves a facilitative interaction between TGFbeta(1)-NADPH oxidase and LOX-1. Further, the activation of MAPK pathway appears to be downstream of TGFbeta(1)-reactive oxygen species-LOX-1 cascade.Transforming growth factor β1 (TGFβ1) activation leads to tissue fibrosis. Here, we report on the role of LOX-1, a lectin-like 52-kDa receptor for oxidized low density lipoprotein, in TGFβ1-mediated collagen expression and underlying signaling in mouse cardiac fibroblasts. TGFβ1 was overexpressed in wild-type (WT) and LOX-1 knock-out mouse cardiac fibroblasts by transfection with adeno-associated virus type 2 vector carrying the active TGFβ1 moiety (AAV/TGFβ ACT1). Transfection of WT mouse cardiac fibroblasts with AAV/TGFβ ACT1 markedly enhanced the expression of NADPH oxidases (p22phox, p47phox, and gp91phox subunits) and LOX-1, formation of reactive oxygen species, and collagen synthesis, concomitant with an increase in the activation of p38 and p44/42 mitogen-activated protein kinases (MAPK). The TGFβ1-mediated increase in collagen synthesis was markedly attenuated in the LOX-1 knock-out mouse cardiac fibroblasts as well as in WT mouse cardiac fibroblasts treated with a specific anti-LOX-1 antibody. Treatment with anti-LOX-1 antibody also reduced NADPH oxidase expression and MAPK activation. The NADPH oxidase inhibitors and gp91phox small interfering RNA reduced LOX-1 expression, MAPK activation, and collagen formation. The p38 MAPK inhibitors as well as the p44/42 MAPK inhibitors reduced collagen formation without affecting LOX-1 expression in cardiac fibroblasts. These observations suggest that collagen synthesis in cardiac fibroblasts involves a facilitative interaction between TGFβ1-NADPH oxidase and LOX-1. Further, the activation of MAPK pathway appears to be downstream of TGFβ1-reactive oxygen species-LOX-1 cascade.


Hypertension | 2007

Angiotensin II Induces Capillary Formation From Endothelial Cells Via the LOX-1–Dependent Redox-Sensitive Pathway

Chang-Ping Hu; Abhijit Dandapat; Jawahar L. Mehta

Angiotensin II (Ang II) induces angiogenesis by stimulating reactive oxygen species–dependent vascular endothelial growth factor (VEGF) expression. Ang II via type 1 receptor upregulates the expression of LOX-1, a lectin-like receptor for oxidized low-density lipoprotein. LOX-1 activation, in turn, upregulates Ang II type 1 receptor expression. We postulated that interruption of the feedback loop between Ang II and LOX-1 might attenuate Ang II–induced VEGF expression and capillary formation. In vitro experiments showed that Ang II (1 nmol/L) induced the expression of LOX-1 and VEGF and enhanced capillary formation from human coronary endothelial cells in Matrigel assay. Ang II–mediated expression of LOX-1 and VEGF, capillary formation, intracellular reactive oxygen species generation, and phosphorylation of p38 as well as p44/42 mitogen-activated protein kinases, were suppressed by anti–LOX-1 antibody, nicotinamide-adenine dinucleotide phosphate oxidase inhibitor apocynin and the Ang II type 1 receptor blocker losartan, but not by the Ang II type 2 receptor blocker PD123319. Expression of VEGF and capillary formation induced by Ang II were also inhibited by the p44/42 mitogen-activated protein kinase inhibitor U0126 and the p38 mitogen-activated protein kinase inhibitor SB203580. In ex vivo experiments, Ang II stimulated capillary sprouting from aortic rings from wild-type mice, and this phenomenon was significantly attenuated by pretreatment of aortic rings with anti–LOX-1 antibody, apocynin, and losartan, but not by PD123319. Importantly, Ang II–induced capillary sprouting was minimal from aortic rings from LOX-1 null mice compared with wild-type mice. These findings suggest that small concentrations of Ang II promote capillary formation by inducing the expression of VEGF via Ang II type 1 receptor/LOX-1–mediated stimulation of the reactive oxygen species-mitogen-activated protein kinase pathway.


Journal of Hypertension | 2004

Stimulation of calcitonin gene-related peptide synthesis and release: mechanisms for a novel antihypertensive drug, rutaecarpine.

Pan-Yue Deng; Feng Ye; Wei-Jun Cai; Gui-Shan Tan; Chang-Ping Hu; Han-Wu Deng; Yuan-Jian Li

Background Previous investigations have demonstrated that capsaicin-sensitive primary sensory nerves play an important role in modulation of the peripheral resistance of the circulation system. The vanilloid receptor subtype 1 (VR1) is expressed almost exclusively in the primary sensory nerves and cell bodies of these sensory neurons. Rutaecarpine (Rut) can relax vascular smooth muscle via stimulation of calcitonin gene-related peptide (CGRP) release by activation of VR1. Methods In the present study, we examined the depressor effect of Rut and the possible mechanisms in the phenol-induced hypertensive rats, in which hypertension was induced by injecting 50 μl of 10% phenol in the lower pole of the left kidney. Results Acute administration of Rut (30, 100 or 300 μg/kg, i.v.) caused a depressor effect concomitantly with an increase in the plasma concentration of CGRP in a dose-dependent manner, which was blocked by capsaicin (used to deplete the CGRP from sensory nerves) or capsazepine (a competitive VR1 antagonist), causing an ≈85% and ≈80% change in mean arterial pressure, respectively, and by either of them, causing an ≈90% elevation of plasma CGRP. In the chronic study, Rut at a dose of 3 or 6 mg/kg per day significantly lowered tail-cuff systolic blood pressure to 159 ± 8 and 136 ± 10 mmHg, respectively, compared with hypertensive rats (179 ± 8 mmHg), and caused a sustained hypotensive effect from day 6 on. Pretreatment with capsaicin blocked the depressor effect of Rut by ≈65%. Treatment with Rut significantly increased the synthesis and release of CGRP, as shown by the increase in the levels of CGRP mRNA and peptide in the dorsal root ganglia, the density of CGRP immunoreactive nerve fibers in the mesenteric artery, the CGRP content in the spinal cord and the plasma concentration of CGRP, which was markedly attenuated by pretreatment with capsaicin. Conclusion These results suggest, for the first time, that the hypotensive effect of Rut is mediated by stimulation of CGRP synthesis and release via activation of VR1 in the phenol-induced hypertensive rat.


Antioxidants & Redox Signaling | 2013

Aspirin Inhibits Oxidant Stress, Reduces Age-Associated Functional Declines, and Extends Lifespan of Caenorhabditis elegans

Srinivas Ayyadevara; Puneet Bharill; Abhijit Dandapat; Chang-Ping Hu; Magomed Khaidakov; Sona Mitra; Robert J. Shmookler Reis; Jawahar L. Mehta

AIMS Oxidative stress and inflammation are leading risk factors for age-associated functional declines. We assessed aspirin effects on endogenous oxidative-stress levels, lifespan, and age-related functional declines, in the nematode Caenorhabditis elegans. RESULTS Both aspirin and its salicylate moiety, at nontoxic concentrations (0.5-1 mM), attenuated endogenous levels of reactive oxygen species (p<0.001), and upregulated antioxidant genes encoding superoxide dismutases (especially sod-3, p<0.001), catalases (especially ctl-2, p<0.0001), and two glutathione-S-transferases (gst-4 and gst-10; each p<0.005). Aspirin, and to a lesser degree salicylate, improved survival of hydrogen peroxide, and in the absence of exogenous stress aspirin extended lifespan by 21%-23% (each p<10(-9)), while salicylate added 14% (p<10(-6)). Aspirin and salicylate delayed age-dependent declines in motility and pharyngeal pumping (each p<0.005), and decreased intracellular protein aggregation (p<0.0001)-all established markers of physiological aging-consistent with slowing of the aging process. Aspirin fails to improve stress resistance or lifespan in nematodes lacking DAF-16, implying that it acts through this FOXO transcription factor. INNOVATION Studies in mice and humans suggest that aspirin may protect against multiple age-associated diseases by reducing all-cause mortality. We now demonstrate that aspirin markedly slows many measures of aging in the nematode. CONCLUSIONS Aspirin treatment is associated with diminished endogenous oxidant stress and enhanced resistance to exogenous peroxide, both likely mediated by activation of antioxidant defenses. Our evidence indicates that aspirin attenuates insulin-like signaling, thus protecting against oxidative stress, postponing age-associated functional declines and extending C. elegans lifespan under benign conditions.


European Journal of Pharmacology | 1999

The cardioprotective effects of nitroglycerin-induced preconditioning are mediated by calcitonin gene-related peptide

Chang-Ping Hu; Yuan-Jian Li; Han-Wu Deng

Previous investigations have shown that endogenous calcitonin gene-related peptide (CGRP) may play an important role in the mediation of ischemic preconditioning and that nitroglycerin evokes the release of CGRP. In the present study, we examined whether nitroglycerin provides a preconditioning stimulus, and whether the cardioprotective effects of nitroglycerin-induced preconditioning involve endogenous CGRP. Thirty minutes of global ischemia and 30 min of reperfusion caused a significant impairment of cardiac contractile function and an increased release of creatine kinase. Pretreatment with nitroglycerin at the concentration of 3x10(-7) or 10(-6) M for 5 min produced a significant improvement of cardiac function and a decrease in the release of creatine kinase. The content of CGRP-like immunoreactivity in coronary effluent was increased during nitroglycerin perfusion. However, the cardioprotection afforded by nitroglycerin was abolished by CGRP-(8-37) (10(-7) M), a selective CGRP receptor antagonist. Pretreatment with capsaicin (50 mg/kg, s.c.), which specifically depletes the transmitter content of sensory nerves, also abolished the protective effects of nitroglycerin and markedly reduced the release of CGRP from the heart during nitroglycerin perfusion. These findings suggest that nitroglycerin-induced preconditioning is related to stimulation of CGRP release in rat hearts.

Collaboration


Dive into the Chang-Ping Hu's collaboration.

Top Co-Authors

Avatar

Yuan-Jian Li

Central South University

View shared research outputs
Top Co-Authors

Avatar

Jawahar L. Mehta

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Peng

Central South University

View shared research outputs
Top Co-Authors

Avatar

Qiong Yuan

Central South University

View shared research outputs
Top Co-Authors

Avatar

Gui-Shan Tan

Central South University

View shared research outputs
Top Co-Authors

Avatar

Han-Wu Deng

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kang-Ping Xu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Zheng Zhang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Jun-Lin Jiang

Central South University

View shared research outputs
Researchain Logo
Decentralizing Knowledge