Changfeng Liu
China University of Geosciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Changfeng Liu.
International Geology Review | 2014
Chen Wu; Tian Jiang; Changfeng Liu; Wencan Liu
The Jiazishan porphyry-type molybdenum deposit is located in the eastern Inner Mongolia Autonomous Region in China. Mineralization occurs mainly as veins, lenses, and layers within the host porphyry. To better understand the link between mineralization and host igneous rocks, we studied samples from underground workings and report new SHRIMP II zircon U–Pb and Re–Os molybdenite ages, and geochemical data from both the molybdenites and the porphyry granites. Seven molybdenite samples yield a Re–Os isochron weighted mean age of 135.4 ± 2.1 Ma, whereas the porphyry granite samples yield crystallization ages of 139 ± 1.5 Ma (Jiazishan deposit) and 133 ± 1 Ma (Taolaituo deposit). The U–Pb and Re–Os ages are similar, suggesting that the mineralization is genetically related to Early Cretaceous porphyry emplacement. Re contents of the molybdenite range from 21.74 ppm to 52.08 ppm, with an average of 35.92 ppm, whereas δ34 S values of the sulphide vary from 1.3‰ to 4.2‰. The ores have 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 18.178–18.385, 15.503–15.613, and 37.979–38.382, respectively. We also obtained a weighted mean U–Pb zircon age of 294.2 ± 2.1 Ma for the oldest granite in Jiazishan area. All granites are A-type granites. These observations indicate that the molybdenites and the porphyry granites were derived from a mixed source involving young accretionary materials and enriched subcontinental lithospheric mantle. A synthesis of geochronological and geological data reveals that porphyry emplacement and Mo mineralization in the Jiazishan deposit occurred contemporaneously with Early Cretaceous tectonothermal events associated with lithospheric thinning, which was caused by delamination and subsequent upwelling of the asthenosphere associated with intra-continental extension in Northeast China.
Lithosphere | 2017
Chen Wu; Andrew V. Zuza; An Yin; Changfeng Liu; Robin C. Reith; Jinyu Zhang; Wencan Liu; Zhiguang Zhou
Our understanding of the assembly history of Asia depends critically on the tectonic relationships between its major cratons, including Siberia, North China, South China, and Tarim. The intervening microcontinents between these cratons can provide insight into the paleogeographic and paleotectonic relationships of the cratons, but there is currently a general lack of knowledge regarding the basement geology of these microcontinents. Here we present results from systematic geologic mapping, U-Pb zircon dating, whole-rock geochemical analysis, and synthesis of existing data to establish the Proterozoic to early Paleozoic evolution of the central Qilian basement to the south of the North China craton in northwest China. Our results indicate that the region underwent three major periods of magmatic activity at 960–880, 877–710, and 550–375 Ma. Our geochemical analysis suggests that the ca. 900 Ma plutons were generated during arc magmatism and/or syncollisional crustal melting, whereas the ca. 820 Ma plutons are A-type granitoids, which are typically associated with extensional tectonism. Igneous zircons from a high- and ultrahigh-pressure eclogite in the north-central Qilian Shan have a U-Pb age of ca. 916 Ma, whereas dating of the recrystallized rims suggests that eclogite facies metamorphism occurred at ca. 485 Ma. Our detrital zircon geochronology also indicates that a widespread metasedimentary unit in the region was deposited between ca. 1200 and ca. 960 Ma, prior to the onset of a rift-drift event at ca. 750 Ma. Based on regional geologic constraints and the magmatic history, we propose the following tectonic history: (1) the paleo–Qilian Ocean bound the combined North Tarim–North China craton to the south (present-day coordinates) in the Mesoproterozoic; (2) the paleo–Qilian Ocean closed between 900 and 820 Ma following the collision of North Tarim–North China craton and the South Tarim–Qaidam–Kunlun continent; (3) the younger Qilian Ocean opened at ca. 775 Ma along the previous suture trace of the paleo–Qilian Ocean as a marginal sea within southern Laurasia; and (4) this ocean closed by ca. 445–440 Ma as a result of collision between the Tarim–North China cratons and the Qaidam-Kunlun continent along a south-dipping subduction system.
Journal of Earth Science | 2017
Shiwei Ma; Changfeng Liu; Zhiqin Xu; Zhiguang Zhou; Jinyuan Dong; Hongying Li
Early Carboniferous gabbros and diorites are distributed in West Ujimqin, Inner Mongolia. The LA-ICP-MS zircon U-Pb ages of the gabbro and diorite samples are 321±2 Ma (MSWD=0.65) and 319.4±1.5 Ma (MSWD=0.42), respectively. In addition, new geochemistry data from three gabbro and three diorite samples are presented. All six samples show high Al2O3 contents but low-TiO2 contents, belonging to tholeiitic and calc-alkali basalt series. All of the samples have similar chondrite normalized REE patterns characterized by moderate depletion in LREE similar to normal middle oceanic ridge basalt (MORB). The MORB and PM-normalized trace element patterns show the enrichment in large ion lithophile elements (LILE, e.g., Rb, Ba and Sr), depletion in high field strength elements (HFSE) and distinctly negative Nb and Ta anomalies similar to volcanic arc basalt. Furthermore, as shown in the correlation plots of La/Ba vs. La/Nb, Ba/La vs. Ce/Pb, Th/La vs. Ce/Pb, Nb/La vs. Ba/Rb, and Nb/Y vs. La/Yb, the magma source has undergone contamination and metasomatism from the subduction fluid. According to the Zr/Nb, La/Nb, and La/Ta ratios and the Nb/Y vs. Zr/Y and Sm/Yb vs. La/Sm diagrams, the magma was derived from shallow depleted lithospheric mantle and formed by moderate (5%–20%) partial melting of spinel lherzolites. Tectonic setting discrimination diagrams reveal that the gabbros and diorites display both characteristics of MORB and volcanic arc basalt, which is consistent with their geochemical characteristics. On the basis of the geo-chemical features of these samples, combined with regional geological data and many previous researches in the study area, the Early Carboniferous gabbros and diorites of West Ujimqin are suggested to be formed in an intensely extensional rift setting, and a limited immature ocean basin probably formed after subsequent development.
International Geology Review | 2018
Changfeng Liu; Mengting Xu; Zhiguang Zhou; Guosheng Wang; Chen Wu; Yan Zhu; Hongying Li; Baoying Ye
ABSTRACT We undertake zircon U–Pb dating, Hf isotopes, and geochemical analyses of the Houtoumiao pluton in the Xilinhot microcontinent (XLMC) in the central Inner Mongolia with an aim of determining their ages, petrogenesis, and sources, which are important for understanding the late Palaeozoic tectonic evolution of the Xing’an-Mongolia Orogenic Belt. The Houtoumiao pluton consists of medium-grained granodiorite, coarse- and medium-grained syenogranite. Mafic microgranular enclaves (MMEs) are common in the Houtoumiao pluton. Zircon U–Pb dating has yielded ages of 303 ± 2 and 301 ± 2 Ma for the granodiorite, 295 ± 2 Ma for the syenogranite, and 292 ± 1 Ma for the MMEs. The granodiorite and syenogranite have features of high-K high silica content, rich in Rb, U, and Th, but low content of HFSE, belong to calc-alkaline series. The P2O5 concentration decreases with the increasing SiO2 content, suggesting I-type affinity. The MMEs, which are characterized by low SiO2, relatively high and variable TiO2, Al2O3, FeOT, MgO, CaO, Ni, and Cr contents, also have much higher total rare earth element concentrations that the REE patterns are subparallel to those of the host rocks. Zircons from the host rocks have εHf(t) values from +3.91 to +7.73 and TDM2 values of 820–1067 Ma, suggesting that the granitoids were probably dominated by remelting of juvenile crust materials. The MMEs are of εHf(t) value ranging from +6.23 to +11.04 and TDM1 values from 490 to 693 Ma, suggesting that the primary magma probably was derived from partial melting of a depleted lithospheric mantle, the mafic mineral fractional crystallization and crustal contamination occurred during the magma evolution. Combined with previous studies on the contemporaneous magma-tectonic activities in the Uliastai Continental Margin and XLMC, we suggest that the Houtoumiao pluton formed in a post-orogenic setting.
International Geology Review | 2016
Hongying Li; Zhiguang Zhou; Pengju Li; Da Zhang; Changfeng Liu; Xiaoqi Zhao; Li‐zhen Chen; Congnan Gu; Tingting Lin; Mengmeng Hu
ABSTRACT The eastern segment of the Central Asian Orogenic Belt is traditionally called the Xing’an Mongolia Orogenic Belt (XMOB). Ordovician intrusive rocks exposed in the XMOB, from north to south, are the Abaga-East Ujimqin Qi-Duobaoshan belt, the Sonid Zuoqi-West Ujimqin Qi belt, and the Damaoqi-Baimaimiao-Tulinkai belt, respectively. Zircon U–Pb dating and geochemical data are presented for the intrusive rocks in East Ujimqin Qi and West Ujimqin Qi, Inner Mongolia. The intrusive rocks from East Ujimqin Qi consist of gabbro, diorite, and granodiorite. LA-MC-ICP-MS zircon U–Pb ages range 446 to 461 Ma. Geochemical data suggest that the gabbros and diorites from East Ujimqin are a tholeiitic series, both of arc-related and N-MORB (mid-ocean ridge basalt) signature, indicating a back-arc basin setting. The granodiorites have a shoshonitic series and arc-related signature. Rare earth element (REE) patterns and trace element characteristics suggest gabbros, diorites, and granodiorites are petrogenetically correlated. These intrusive rocks from East Ujimqin Qi have high light REE, Th, and U concentrations, suggesting the effect of middle–upper continental crustal contamination. Major oxides display positive or negative correlations, with increasing MgO or SiO2, indicating that fractional crystallization occurred during magma evolution. Geochemical data of diorite from West Ujimqin Qi indicate a tholeiitic series, arc-related signature. Zircon U–Pb dating yielded an age of 441.8 ± 1.5 Ma. Integrated with the regionally exposed Mid–Late Ordovician plutons and metasedimentary strata, we concluded that the northward subduction of the Palaeo-Asian Ocean (PAO) that occurred beneath the southern margin of the South Mongolian Micro-continent along the Sonid Zuoqi-Xilinhot gave rise to early Palaeozoic igneous rocks from the Abaga–East Ujimqin Qi–Duobaoshan and the Sonid Zuoqi–West Ujimqin Qi belts. Southward subduction beneath the North China Craton generated the Damaoqi–Baimaimiao–Tulinkai belt. The results support the bidirectional subduction model of the PAO in the early Palaeozoic.
International Journal of Earth Sciences | 2018
Zhiguang Zhou; Changfeng Liu; Guosheng Wang; Neng Zhang; Hongying Li; Chen Wu
The Xing’an–Mongolia orogenic belt places at the southeastern margin of the Central Asian orogenic belt, is important for unraveling the tectonic evolution of the accretionary orogens. The validity of existing models that account for the development and closure of the Paleo-Asian Ocean critically depends on the assumed initial configuration and evolution process of the various microcontinents that were separated by the ophiolitic belts or suture zones, and deep faults. In this work, we present a newly discovered Dashizhai ophiolitic mélange belt in the Ulanhot region, and systematically investigate the occurrence through petrology and geochronology of this ophiolitic mélange. The Dashizhai ophiolitic mélange belt is a typical SSZ-type ophiolitic mélange, has a block-in-matrix structure, the blocks include ophiolitic ultramafic rock, volcanic rock, siliceous rock and gabbro in a matrix of deformed Early Permian slate. Our new geochronology data suggest that the Dashizhai ophiolitic mélange belt should form in the early Permian or younger and emplaced before the late Permian deposition. By focusing on the regional geologic history of the southeastern Xing’an–Mongolia orogenic belt, the Dashizhai ophiolitic mélange belt together with northeast-migrating Hehei fault zone were suggested as the tectonic boundary between the Xing’an and Songliao–Xilinhot blocks.
Geological Magazine | 2017
Changfeng Liu; Zhiguang Zhou; Yongju Tang; Chen Wu; Hongying Li; Yan Zhu; Tian Jiang; Wencan Liu; Baoying Ye
Zircon U–Pb dating and whole-rock geochemical analysis have been performed on Late Jurassic – Early Cretaceous intrusive rocks of the Ulanhot area, NE China, with the aim of constraining the tectonic evolution of the central and southern Da Xingan Range. Zircon U–Pb dating indicates that Late Jurassic – Early Cretaceous magmatic events experienced four stages at: c. 155 Ma; c. 144 Ma; 135–130 Ma; and c. 126 Ma. The c. 155 Ma magmatic event consists of quartz diorite and granite-porphyryp with the geochemical characteristic of high Sr and Sr/Y or high A/CNK (1.38), implying the primary magma was derived from partial melting of a thickened lower crust which induced the closure of the Mongol–Okhotsk Ocean. The c. 144 Ma magmatic event consists of quartz monzodiorite with the geochemical characteristics of alkaline series, and indicates the delamination of a thickened crust. The 135–130 Ma magmatic event consists of syenogranite and granite-porphyry with characteristics of both I-type and A-type granites, which induced both the subduction of the Palaeo-Pacific oceanic plate and the post-orogenic extension of the Mongol–Okhotsk Orogenic Belt. The c. 126 Ma magmatic event consisted of highly fractionated I-type biotite granite and alkaline series gabbro, marking the end of the Mongol–Okhotsk Orogen, and implying that the study area was controlled by the circum-Pacific tectonic system during this stage.
International Journal of Earth Sciences | 2016
Chen Wu; Changfeng Liu; Yan Zhu; Zhiguang Zhou; Tian Jiang; Wencan Liu; Hongying Li; Chu Wu; Baoying Ye
Journal of Asian Earth Sciences | 2015
Changfeng Liu; Chen Wu; Yan Zhu; Zhiguang Zhou; Tian Jiang; Wencan Liu; Hongying Li
Gondwana Research | 2017
Chen Wu; Biren Wang; Zhiguang Zhou; Guosheng Wang; Andrew V. Zuza; Changfeng Liu; Tian Jiang; Wencan Liu; Shiwei Ma