Changfeng Tai
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Changfeng Tai.
Behavioural Brain Research | 1998
William C. de Groat; Isao Araki; Margaret A. Vizzard; Mitsuharu Yoshiyama; Naoki Yoshimura; Kimio Sugaya; Changfeng Tai; James R. Roppolo
The storage and periodic elimination of urine are dependent upon neural circuits in the brain and spinal cord that co-ordinate the activity of the urinary bladder, the urethra and the striated urethral sphincter. This study utilized anatomical, electrophysiological and pharmacological techniques to examine: (1) the organization of the parasympathetic excitatory reflex mechanisms that control the urinary bladder of the rat and the cat; and (2) the changes in these reflexes during postnatal development and after spinal cord injury. In normal adult cats and rats, the parasympathetic excitatory input to the bladder is dependent upon a spinobulbospinal reflex pathway that is activated by myelinated (Adelta) bladder afferents and that passes through an integrative center (the pontine micturition center, PMC) in the rostral brain stem. Transneuronal tracing studies using pseudorabies virus as well as physiological methods have revealed that the PMC is located in close proximity to the locus coeruleus. Single unit recordings indicate that neurons in the PMC respond to afferent input from the bladder and are excited prior to or during reflex bladder contractions. Glutamic acid is the major excitatory transmitter in the micturition reflex pathway. Glutamatergic transmission which is mediated by AMPA/kainate and NMDA receptors can be modulated by a variety of other transmitters. In neonatal animals, a spinal micturition reflex is activated by somatic afferent fibers from the perigenital region. This reflex is suppressed during postnatal development, but can be unmasked in adult animals following spinal cord injury. Spinal injury also causes the emergence of a spinal bladder-to-bladder reflex which in the cat is activated by capsaicin-sensitive C-fiber bladder afferents. Patch clamp studies in spinal cord slice preparations indicate that developmental and spinal cord injury induced plasticity in sacral parasympathetic reflex pathways is due in part to alterations in glutamatergic excitatory transmission between interneurons and preganglionic neurons. Changes in the electrical properties of bladder afferent pathways may also contribute to the reorganization of bladder reflexes in paraplegic animals.
Naunyn-schmiedebergs Archives of Pharmacology | 2008
Naoki Yoshimura; Yasuhiro Kaiho; Minoru Miyazato; Takakazu Yunoki; Changfeng Tai; Michael B. Chancellor; Pradeep Tyagi
The functions of the lower urinary tract, to store and periodically release urine, are dependent on the activity of smooth and striated muscles in the bladder, urethra, and external urethral sphincter. During urine storage, the outlet is closed, and the bladder smooth muscle is quiescent. When bladder volume reaches the micturition threshold, activation of a micturition center in the dorsolateral pons (the pontine micturition center) induces a bladder contraction and a reciprocal relaxation of the urethra, leading to bladder emptying. During voiding, sacral parasympathetic (pelvic) nerves provide an excitatory input (cholinergic and purinergic) to the bladder and inhibitory input (nitrergic) to the urethra. These peripheral systems are integrated by excitatory and inhibitory regulation at the levels of the spinal cord and the brain. Injury or diseases of the nervous system, as well as drugs and disorders of the peripheral organs, can produce lower urinary tract dysfunction. In the overactive bladder (OAB) condition, therapeutic targets for facilitation of urine storage can be found at the levels of the urothelium, detrusor muscles, autonomic and afferent pathways, spinal cord, and brain. There is increasing evidence showing that the urothelium has specialized sensory and signaling properties including: (1) expression of nicotinic, muscarinic, tachykinin, adrenergic, bradykinin, and transient receptor potential (TRP) receptors, (2) close physical association with afferent nerves, and (3) ability to release chemical molecules such as adenosine triphosphate (ATP), acetylcholine, and nitric oxide. Increased expression and/or sensitivity of these urothelial-sensory molecules that lead to afferent sensitization have been documented as possible pathogenesis of OAB. Targeting afferent pathways and/or bladder smooth muscles by modulating activity of ligand receptors (e.g., neurokinin, ATP, or β3-adrenergic receptors) and ion channels (e.g., TRPV1 or K) could be effective to suppress OAB. In the stress urinary incontinence condition, pharmacotherapies targeting the neurally mediated urethral continence reflex during stress conditions such as sneezing or coughing could be effective for increasing the outlet resistance. Therapeutic targets include adrenergic and serotonergic receptors in the spinal cord as well as adrenergic receptors at the urethral sphincter, which can enhance urethral reflex activity during stress conditions and increase baseline urethral pressure, respectively.
IEEE Transactions on Biomedical Engineering | 2005
Changfeng Tai; W.C. de Groat; J.R. Roppolo
Nerve conduction block induced by high-frequency biphasic electrical currents is analyzed using a lumped circuit model of the unmyelinated axon based on Hodgkin-Huxley equations. Axons of different diameters (5-20 /spl mu/m) can not be blocked completely when the stimulation frequency is between 2 kHz and 4 kHz. However, when the stimulation frequency is above 4 kHz, all axons can be blocked. At high-frequency a higher stimulation intensity is needed to block nerve conduction. The larger diameter axon has a lower threshold intensity for conduction block. The stimulation waveform in which the pulsewidth changes with frequency is more effective in blocking nerve conduction than the waveform in which the pulsewidth is fixed. The activation of potassium channels, rather than inactivation of sodium channels, is the possible mechanism underlying the nerve conduction block of the unmyelinated axon. This simulation study further increases our understanding of axonal conduction block induced by high-frequency biphasic currents, and can guide future animal experiments as well as optimize stimulation waveforms that might be used for electrical nerve block in clinical applications.
Neurourology and Urodynamics | 2007
Changfeng Tai; Jicheng Wang; William C. de Groat; James R. Roppolo
AIMS To investigate pudendal-to-bladder spinal reflexes in chronic spinal cord injured (SCI) cats induced by electrical stimulation of the pudendal nerve. METHODS Bladder inhibition or voiding induced by pudendal nerve stimulation at different frequencies (3 or 20 Hz) was studied in three female, chronic SCI cats under alpha-chloralose anesthesia. RESULTS Voiding induced by a slow infusion (2-4 ml/min) of saline into the bladder was very inefficient (voiding efficiency=7.3%+/-0.9%). Pudendal nerve stimulation at 3 Hz applied during the slow infusion inhibited reflex bladder activity, and significantly increased bladder capacity to 147.2+/-6.1% of its control capacity. When the 3-Hz stimulation was terminated, voiding rapidly occurred and the voiding efficiency was increased to 25.4+/-6.1%, but residual bladder volume was not reduced. Pudendal nerve stimulation at 20 Hz induced large bladder contractions, but failed to induce voiding during the stimulation due to the direct activation of the motor pathway to the external urethral sphincter. However, intermittent pudendal nerve stimulation at 20 Hz induced post-stimulus voiding with 78.3+/-12.1% voiding efficiency. The voiding pressures (39.3+/-6.2 cmH2O) induced by the intermittent pudendal nerve stimulation were higher than the voiding pressures (23.1+/-1.7 cmH2O) induced by bladder distension. The flow rate during post-stimulus voiding induced by the intermittent pudendal nerve stimulation was significantly higher (0.93+/-0.04 ml/sec) than during voiding induced by bladder distension (0.23+/-0.07 ml/sec). CONCLUSIONS This study indicates that a neural prosthetic device based on pudendal nerve stimulation might be developed to restore micturition function for people with SCI.
Experimental Neurology | 2006
Changfeng Tai; Stanley E. Smerin; William C. de Groat; James R. Roppolo
The effects of pudendal nerve stimulation on reflex bladder activity were investigated in cats with chronic spinal cord injury (6-12 months) under alpha-chloralose anesthesia. Electrical stimulation of the pudendal nerve on one side at different frequencies and intensities induced either inhibitory or excitatory effects on bladder activity. The inhibitory effect peaked at a stimulation frequency of 3 Hz and gradually decreased at lower or higher frequencies. The inhibitory effect could occur at stimulation intensities between 0.3 and 1 V (pulse width 0.1 ms) and increased at intensities up to 10 V. Stimulation of the central end of transected pudendal nerve also inhibited bladder activity, indicating that afferent axons in pudendal nerve are involved. Nerve transections also showed that both hypogastric and pelvic nerves might be involved in the inhibitory pudendal-to-bladder spinal reflex. Pudendal nerve stimulation at 20 Hz and at the same intensities (1-10 V) elicited a bladder excitatory response. Although this excitatory effect could not sustain a long lasting bladder contraction at small bladder volumes, it did induce continuous rhythmic bladder contractions at large bladder volumes. This study indicated the possibility of developing a neuroprosthetic device based on pudendal nerve electrical stimulation to restore micturition function after spinal cord injury.
IEEE Transactions on Biomedical Engineering | 2006
Xu Zhang; J.R. Roppolo; W.C. de Groat; Changfeng Tai
The mechanisms of nerve conduction block induced by high-frequency biphasic electrical currents were investigated using a lumped circuit model of the myelinated axon based on Frankenhaeuser-Huxley (FH) model or Chiu-Ritchie-Rogart-Stagg-Sweeney (CRRSS) model. The FH model revealed that the constant activation of potassium channels at the node under the block electrode, rather than inactivation of sodium channels, is the likely mechanism underlying conduction block of myelinated axons induced by high-frequency biphasic stimulation. However, the CRRSS model revealed a different blocking mechanism where the complete inactivation of sodium channels at the nodes next to the block electrode caused the nerve conduction block. The stimulation frequencies to observe conduction block in FH model agree with the observations from animal experiments (greater than 6 kHz), but much higher frequencies are required in CRRSS model (greater than 15 kHz). This frequency difference indicated that the constant activation of potassium channels might be the underlying mechanism of conduction block observed in animal experiments. Using the FH model, this study also showed that the axons could recover from conduction block within 1 ms after termination of the blocking stimulation, which also agrees very well with the animal experiments where nerve block could be reversed immediately once the blocking stimulation was removed. This simulation study, which revealed two possible mechanisms of nerve conduction block in myelinated axons induced by high-frequency biphasic stimulation, can guide future animal experiments as well as optimize stimulation waveforms for electrical nerve block in clinical applications
IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2005
Changfeng Tai; W.C. de Groat; James R. Roppolo
Nerve conduction block induced by high-frequency sinusoidal electrical current was simulated using a lumped circuit model of the unmyelinated axon based on Hodgkin-Huxley equations. Axons of different diameters (1-20 /spl mu/m) can be blocked when the stimulation frequency is above 4 kHz. At higher frequency, a higher stimulation intensity is needed to block nerve conduction. Larger diameter axons have a lower threshold intensity for conduction block. High-frequency sinusoidal electrical currents are less effective in blocking nerve conduction than biphasic square pulses of the same frequency. The activation of potassium channels, rather than inactivation of sodium channels, is the possible mechanism underlying the nerve conduction block of the unmyelinated axon induced by high-frequency biphasic (sinusoidal or square pulse) stimulation. This simulation study, which provides more information about the axonal conduction block induced by high-frequency sinusoidal currents, can guide future animal experiments, as well as optimize stimulation waveforms for electrical nerve block in possible clinical applications.
American Journal of Physiology-renal Physiology | 2011
Changfeng Tai; Bing Shen; Mang Chen; Jicheng Wang; James R. Roppolo; William C. de Groat
Inhibition of bladder activity by tibial nerve stimulation was investigated in α-chloralose-anesthetized cats with an intact spinal cord. Short-duration (3-5 min) tibial nerve stimulation at both low (5 Hz) and high (30 Hz) frequencies applied repeatedly during rhythmic isovolumetric bladder contractions was effective in inhibiting reflex bladder activity. Both frequencies of stimulation were also effective in inducing inhibition that persisted after the termination of the stimulation. The poststimulation inhibitory effect induced by the short-duration stimulation significantly increased bladder capacity to 181.6 ± 24.36% of the control capacity measured before applying the stimulation. Thirty-minute continuous stimulation induced prolonged poststimulation inhibition of bladder activity, which lasted for more than 2 h and significantly increased bladder capacity to 161.1 ± 2.9% of the control capacity. During the poststimulation periods, 5-Hz stimulation applied during the cystometrogram elicited a further increase (~30% on average) in bladder capacity, but 30-Hz stimulation was ineffective. These results in cats support the clinical observation that tibial nerve neuromodulation induces a long-lasting poststimulation inhibitory effect that is useful in treating overactive bladder symptoms.
Journal of Neurophysiology | 2009
Changfeng Tai; Jicheng Wang; Tao Jin; Ping Wang; Seong-Gi Kim; James R. Roppolo; William C. de Groat
The functions of the lower urinary tract are controlled by complex pathways in the brain that act like switching circuits to voluntarily or reflexly shift the activity of various pelvic organs (bladder, urethra, urethral sphincter, and pelvic floor muscles) from urine storage to micturition. In this study, functional magnetic resonance imaging (fMRI) was used to visualize the brain switching circuits controlling reflex micturition in anesthetized rats. The fMRI images confirmed the hypothesis based on previous neuroanatomical and neurophysiological studies that the brain stem switch for reflex micturition control involves both the periaqueductal gray (PAG) and the pontine micturition center (PMC). During storage, the PAG was activated by afferent input from the urinary bladder while the PMC was inactive. When bladder volume increased to the micturition threshold, the switch from storage to micturition was associated with PMC activation and enhanced PAG activity. A complex brain network that may regulate the brain stem micturition switch and control storage and voiding was also identified. Storage was accompanied by activation of the motor cortex, somatosensory cortex, cingulate cortex, retrosplenial cortex, thalamus, putamen, insula, and septal nucleus. On the other hand, micturition was associated with: 1) increased activity of the motor cortex, thalamus, and putamen; 2) a shift in the locus of activity in the cingulate and insula; and 3) the emergence of activity in the hypothalamus, substantia nigra, globus pallidus, hippocampus, and inferior colliculus. Understanding brain control of reflex micturition is important for elucidating the mechanisms underlying neurogenic bladder dysfunctions including frequency, urgency, and incontinence.
IEEE Transactions on Biomedical Engineering | 2006
Xu Zhang; J.R. Roppolo; W.C. de Groat; Changfeng Tai
Nerve conduction block induced by high-frequency biphasic rectangular pulses was analyzed using a lumped circuit model of the myelinated axon based on Frankenhaeuser-Huxley (FH) equations. At the temperature of 37 /spl deg/C, axons of different diameters (2-20 /spl mu/m) can be blocked completely at supra-threshold intensities when the stimulation frequency is above 10 kHz. However, at stimulation frequencies between 6 kHz and 9 kHz, both nerve block and repetitive firing of action potentials can be observed at different stimulation intensities. When the stimulation frequency is below 6 kHz, nerve block does not occur regardless of stimulation intensity. Larger diameter axons have a lower threshold intensity to induce conduction block. When temperature is reduced from 37 /spl deg/C to 20 /spl deg/C, the lowest frequency to completely block large axons (diameters 10-20 /spl mu/m) decreased from 8 kHz to 4 kHz. This simulation study can guide future animal experiments as well as optimize stimulation waveforms for electrical nerve block in clinical applications.