Changfeng Yan
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Changfeng Yan.
Korean Journal of Chemical Engineering | 2017
Yaping Xue; Changfeng Yan; Xiaoyong Zhao; Shilin Huang; Changqing Guo
Hydrogen production from steam reforming of acetic acid was investigated over Ni/La2O3-ZrO2 catalyst. A series of Ni/La2O3-ZrO2 catalysts were synthesized by sol-gel method coupled with wet impregnation, which was characterized by XRD, BET, TEM, EDS, TG, SEM and TPR. Catalytic activity of Ni/La2O3-ZrO2 was evaluated by steam reforming of acetic acid at the temperature range of 550-750 °C. The tetragonal phase La0.1Zr0.9O1.95 is formed through the doping of La2O3 into the ZrO2 lattice and nickel species are highly dispersed on the support with high specific surface area. H2 yield and CO2 yield of Ni/La2O3-ZrO2 catalyst with 15%wt Ni reaches 89.27% and 80.41% at 600 °C, respectively, which is attributed to high BET surface area and sufficient Ni active sites in strong interaction with the support. 15%wt Ni supported on La2O3-ZrO2 catalyst maintains relatively stable catalytic activities for a period of 20 h.
International Journal of Photoenergy | 2015
Ying Huang; Changfeng Yan; Changqing Guo; Shilin Huang
A series of new two semiconductor catalysts, Co3O4/CeO2, were prepared by glycine-nitrate combustion method for photocatalytic reduction of carbon dioxide to produce methanol and ethanol under visible light ( nm) irradiation. The catalysts were characterized by BET, UV-vis spectra, XRD, SEM, PL, and XPS and the results indicated that the catalyst with 5 wt.% of Co3O4 has the highest yield among all kinds of tests with the methanol yield of 1.52 μmol·g−1·h−1 and the ethanol yield of 4.75 μmol·g−1·h−1, which are about 2.34 and 1.71 times as large as those of CeO2. However, methanol and ethanol can hardly be detected for Co3O4 under the same condition because of its too narrow band gap. The improvement of the photoreduction activity of Co3O4 doped CeO2 was caused by the separation of electron-hole pairs of Co3O4/CeO2 and charge transfer between Co3O4 and CeO2, mimicking the Z-scheme in photosynthesis.
Ultrasonics Sonochemistry | 2018
Rushdi D. Senevirathne; Lahiru K. Abeykoon; Nuwan L. De Silva; Changfeng Yan; Jayasundera Bandara
Dielectric oxide materials are well-known insulators that have many applications in catalysis as well as in device manufacturing industries. However, these dielectric materials cannot be employed directly in photochemical reactions that are initiated by the absorption of UV-Vis photons. Despite their insensitivity to solar energy, dielectric materials can be made sono-photoactive even for low energy IR photons by modifications of the interfacial properties of dielectric materials by noble metals and metal oxides. In this investigation, by way of interface modification of dielectric MgO nanoparticles by Ag metal and Ag2O nanoparticles, IR photon initiated sono-photocatalytic activity of MgO is reported. The observed photocatalytic activity is found to be the synergic action of both IR light and sonication effect and sonication assisted a multi-step, sub-bandgap excitation of electrons in the MgO is proposed for the observed catalytic activity of Ag/Ag2O coated MgO nanoparticles. Our investigation reveals that other dielectric materials such as silver coated SiO2 and Al2O3 also exhibit IR active sono-photocatalytic activity.
Chinese Journal of Polymer Science | 2018
Yuan Gan; Zhida Wang; Zhuoxin Lu; Yan Shi; Hongyi Tan; Changfeng Yan
This work offers a typical understanding of the factors that govern the nanostructures of poly(4-vinyl pyridine)-b-polystyrene-b-poly(4-vinyl pyridine) (P4VP-b-PS-b-P4VP) block copolymers (BCs) in dioxane/water, in which water is a selective solvent for the P4VP block. It is achieved through an investigation of the amphiphilic triblock copolymer micelles by variation of three different factors, including water content (above CWC but under the immobile concentration), temperature (ranging from 20 °C to 80 °C), and copolymer composition (low and high PS block length). Transition of bead-like micelles to vesicles is observed with the increase of water content due to the increase of interfacial energy between the copolymer and the solvent. Effect of temperature superposed on that of water content results in various morphologies, such as beads, fibers, rods, capsules, toroids, lamellae, and vesicles. The interfacial tension between the BC and the solvent increases with the increase of water content but decreases with the increase of temperature, indicating that the micellar morphologies are resulted from the competitive interplay between the temperature and the water content and always change in a direction that decreases the interfacial energy. Based on the micellar structures obtained in this work and the effects of temperature superposed on water concentration, a diagram of phase evolution of different micellar morphologies is illustrated here, covering the temperature range from 20 °C to 80 °C and the water content changing from 20 vol% to 35 vol%. For the investigation of BC composition, morphological transition of vesicle-to-fiber, for high PS length, is observed as compared with bead-to-capsule for low PS length, as the temperature changes from 20 °C to 80 °C. Our research complements the protocols to control over the morphologies and the phase diagram describing P4VP-b-PS-b-P4VP micellar nanostructures in aqueous solution.
Catalysis Science & Technology | 2018
Nuwan Lakshitha De Silva; A. C. A. Jayasundera; A. Folger; O. Kasian; S. Zhang; Changfeng Yan; C. Scheu; J. Bandara
Photocatalytic water splitting is one of the most important renewable paths and a reliable hydrogen production system. In most successful molecular and supramolecular biomimetic hydrogen production methods, a photosensitizer and a catalyst were constructed where the photoexcited electron in the photosensitizer is transferred either inter- or intramolecularly to the catalytic centre. Similar to supramolecular complexes in a photocatalytic hydrogen production scheme, here we develop a redox system that contains Ti3+/Ti2+ reduced states in TiO2 which act as both visible light harvesting components and the catalytic sites for the catalytic hydrogen production with visible-near infrared photons. The Ti3+/Ti2+ states in TiO2 produce hydrogen from pure water with a solar-to-hydrogen energy conversion efficiency of 0.89% and a quantum yield of 43% at 655 nm. The mechanism of hydrogen production by the Ti3+/Ti2+ reduced states in TiO2 involves the initial generation of highly air stable and highly reduced Ti3+ and Ti2+ states in TiO2 by the formation of an AlOOH layer surrounding the anatase and rutile particles. Once Ti3+ and Ti2+ states are generated, these states are continuously self-generated via absorption of visible-near infrared radiation where hydrogen is produced by the transfer of electrons from Ti3+/Ti2+ to H+.
Chinese Journal of Polymer Science | 2017
Zhida Wang; Changfeng Yan; Ying Huang; Li-qi Yi
This contribution focuses on the impact of shear flow on size and nanostructure of PS-based amphiphilic block copolymer (BC) micelles by varying the stirring rate and copolymer composition. The results show that the vesicles formed from diblock copolymer (di-BC) of PS-b-PAA remain with vesicular morphology, although the average size decreases, with the increase of stirring rate. However, the multi-compartment micelles (MCMs) formed from tri-block copolymer (tri-BC) of PS-b-P2VP-b-PEO are quite intricate, in which the copolymer first self-assembles into spheres, then to clusters, to large compound micelles (LCMs), and finally back to spheres, as stirring rate increases from 100 r/min to 2200 r/min. Formation mechanism studies manifest that vesicles form simultaneously as water is added to the di-BC solution, termed as directassembly, and remain with vesicular structure in the flowing process. While for the PS-b-P2VP-b-PEO copolymer, spherical micelles at initial stage can further assemble into clusters and LCMs, termed as second-assembly, due to the speeding-up-aggregation of the favorable stirring. As a result, an invert V-relationship between tri-BC micelle dimension and stirring rate is observed in contrast to the non-linear decreasing curve of di-BC vesicles. It is by investigating these various amphiphilic BCs that the understanding of shear dependence of size and morphology of micelles is improved from self-assembly to second-assembly process.
International Journal of Hydrogen Energy | 2010
Changfeng Yan; Fei-Fei Cheng; Rongrong Hu
International Journal of Hydrogen Energy | 2010
Changfeng Yan; En-Yuan Hu; Chi-Liu Cai
International Journal of Hydrogen Energy | 2011
Rongrong Hu; Changfeng Yan; Lanying Xie; Yi Cheng; Dezhang Wang
International Journal of Hydrogen Energy | 2012
Xiao-xiao Zheng; Changfeng Yan; Rongrong Hu; Juan Li; Hang Hai; Weimin Luo; Changqing Guo; Wenbo Li; Zhou-yu Zhou