Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changjiang Dong is active.

Publication


Featured researches published by Changjiang Dong.


Nature | 2006

Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein

Changjiang Dong; Konstantinos Beis; Jutta Nesper; Anne L. Brunkan-LaMontagne; Bradley R. Clarke; Chris Whitfield; James H. Naismith

Many types of bacteria produce extracellular polysaccharides (EPSs). Some are secreted polymers and show only limited association with the cell surface, whereas others are firmly attached to the cell surface and form a discrete structural layer, the capsule, which envelopes the cell and allows the bacteria to evade or counteract the host immune system. EPSs have critical roles in bacterial colonization of surfaces, such as epithelia and medical implants; in addition some EPSs have important industrial and biomedical applications in their own right. Here we describe the 2.26 Å resolution structure of the 340 kDa octamer of Wza, an integral outer membrane lipoprotein, which is essential for group 1 capsule export in Escherichia coli. The transmembrane region is a novel α-helical barrel. The bulk of the Wza structure is located in the periplasm and comprises three novel domains forming a large central cavity. Wza is open to the extracellular environment but closed to the periplasm. We propose a route and mechanism for translocation of the capsular polysaccharide. This work may provide insight into the export of other large polar molecules such as DNA and proteins.


Nature | 2004

Crystal structure and mechanism of a bacterial fluorinating enzyme

Changjiang Dong; Fanglu Huang; Hai Deng; Christoph Schaffrath; Jonathan B. Spencer; David O'Hagan; James H. Naismith

Fluorine is the thirteenth most abundant element in the earths crust, but fluoride concentrations in surface water are low and fluorinated metabolites are extremely rare. The fluoride ion is a potent nucleophile in its desolvated state, but is tightly hydrated in water and effectively inert. Low availability and a lack of chemical reactivity have largely excluded fluoride from biochemistry: in particular, fluorines high redox potential precludes the haloperoxidase-type mechanism used in the metabolic incorporation of chloride and bromide ions. But fluorinated chemicals are growing in industrial importance, with applications in pharmaceuticals, agrochemicals and materials products. Reactive fluorination reagents requiring specialist process technologies are needed in industry and, although biological catalysts for these processes are highly sought after, only one enzyme that can convert fluoride to organic fluorine has been described. Streptomyces cattleya can form carbon–fluorine bonds and must therefore have evolved an enzyme able to overcome the chemical challenges of using aqueous fluoride. Here we report the sequence and three-dimensional structure of the first native fluorination enzyme, 5′-fluoro-5′-deoxyadenosine synthase, from this organism. Both substrate and products have been observed bound to the enzyme, enabling us to propose a nucleophilic substitution mechanism for this biological fluorination reaction.


Nature | 2010

Cap binding and immune evasion revealed by Lassa nucleoprotein structure

Xiaoxuan Qi; Shuiyun Lan; Wenjian Wang; Lisa McLay Schelde; Haohao Dong; Gregor D. Wallat; Hinh Ly; Yuying Liang; Changjiang Dong

Lassa virus, the causative agent of Lassa fever, causes thousands of deaths annually and is a biological threat agent, for which there is no vaccine and limited therapy. The nucleoprotein (NP) of Lassa virus has essential roles in viral RNA synthesis and immune suppression, the molecular mechanisms of which are poorly understood. Here we report the crystal structure of Lassa virus NP at 1.80 Å resolution, which reveals amino (N)- and carboxy (C)-terminal domains with structures unlike any of the reported viral NPs. The N domain folds into a novel structure with a deep cavity for binding the m7GpppN cap structure that is required for viral RNA transcription, whereas the C domain contains 3′–5′ exoribonuclease activity involved in suppressing interferon induction. To our knowledge this is the first X-ray crystal structure solved for an arenaviral NP, which reveals its unexpected functions and indicates unique mechanisms in cap binding and immune evasion. These findings provide great potential for vaccine and drug development.


Science | 2008

The Structure of an Open Form of an E. coli Mechanosensitive Channel at 3.45 Å Resolution

Wenjian Wang; Susan S. Black; Michelle D. Edwards; Samantha Miller; Emma Morrison; Wendy Bartlett; Changjiang Dong; James H. Naismith; Ian R. Booth

How ion channels are gated to regulate ion flux in and out of cells is the subject of intense interest. The Escherichia coli mechanosensitive channel, MscS, opens to allow rapid ion efflux, relieving the turgor pressure that would otherwise destroy the cell. We present a 3.45 angstrom–resolution structure for the MscS channel in an open conformation. This structure has a pore diameter of ∼13 angstroms created by substantial rotational rearrangement of the three transmembrane helices. The structure suggests a molecular mechanism that underlies MscS gating and its decay of conductivity during prolonged activation. Support for this mechanism is provided by single-channel analysis of mutants with altered gating characteristics.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli

Richard F. Collins; Konstantinos Beis; Changjiang Dong; Catherine H. Botting; Catherine McDonnell; Robert C. Ford; Bradley R. Clarke; Chris Whitfield; James H. Naismith

Capsular polysaccharides (CPSs) are essential virulence determinants of many pathogenic bacteria. Escherichia coli group 1 CPSs provide paradigms for widespread surface polysaccharide assembly systems in Gram-negative bacteria. In these systems, complex carbohydrate polymers must be exported across the periplasm and outer membrane to the cell surface. Group 1 CPS export requires oligomers of the outer membrane protein, Wza, for translocation across the outer membrane. Assembly also depends on Wzc, an inner membrane tyrosine autokinase known to regulate export and synthesis of group 1 CPS. Here, we provide a structural view of a complex comprising Wzc and Wza that spans the periplasm, connecting the inner and outer membranes. Examination of transmembrane sections of the complex suggests that the periplasm is compressed at the site of complex formation. An important feature of CPS production is the coupling of steps involved in biosynthesis and export. We propose that the Wza–Wzc complex provides the structural and regulatory core of a larger macromolecular machine. We suggest a mechanism by which CPS may move from the periplasm through the outer membrane.


Nature | 2014

Structural basis for outer membrane lipopolysaccharide insertion

Haohao Dong; Quanju Xiang; Yinghong Gu; Zhongshan Wang; Neil G. Paterson; Phillip J. Stansfeld; Chuan He; Yizheng Zhang; Wenjian Wang; Changjiang Dong

Lipopolysaccharide (LPS) is essential for most Gram-negative bacteria and has crucial roles in protection of the bacteria from harsh environments and toxic compounds, including antibiotics. Seven LPS transport proteins (that is, LptA–LptG) form a trans-envelope protein complex responsible for the transport of LPS from the inner membrane to the outer membrane, the mechanism for which is poorly understood. Here we report the first crystal structure of the unique integral membrane LPS translocon LptD–LptE complex. LptD forms a novel 26-stranded β-barrel, which is to our knowledge the largest β-barrel reported so far. LptE adopts a roll-like structure located inside the barrel of LptD to form an unprecedented two-protein ‘barrel and plug’ architecture. The structure, molecular dynamics simulations and functional assays suggest that the hydrophilic O-antigen and the core oligosaccharide of the LPS may pass through the barrel and the lipid A of the LPS may be inserted into the outer leaflet of the outer membrane through a lateral opening between strands β1 and β26 of LptD. These findings not only help us to understand important aspects of bacterial outer membrane biogenesis, but also have significant potential for the development of novel drugs against multi-drug resistant pathogenic bacteria.


Biochemical Journal | 2006

The Structure of Senp1-Sumo-2 Complex Suggests a Structural Basis for Discrimination between Sumo Paralogues During Processing.

Linnan Shen; Changjiang Dong; Huanting Liu; James H. Naismith; Ronald T. Hay

The SUMO (small ubiquitin-like modifier)-specific protease SENP1 (sentrin-specific protease 1) can process the three forms of SUMO to their mature forms and deconjugate SUMO from modified substrates. It has been demonstrated previously that SENP1 processed SUMO-1 more efficiently than SUMO-2, but displayed little difference in its ability to deconjugate the different SUMO paralogues from modified substrates. To determine the basis for this substrate specificity, we have determined the crystal structure of SENP1 in isolation and in a transition-state complex with SUMO-2. The interface between SUMO-2 and SENP1 has a relatively poor complementarity, and most of the recognition is determined by interaction between the conserved C-terminus of SUMO-2 and the cleft in the protease. Although SENP1 is rather similar in structure to the related protease SENP2, these proteases have different SUMO-processing activities. Electrostatic analysis of SENP1 in the region where the C-terminal peptide, removed during maturation, would project indicates that it is the electrostatic complementarity between this region of SENP1 and the C-terminal peptides of the various SUMO paralogues that mediates selectivity.


Nature | 2016

Structural basis of outer membrane protein insertion by the BAM complex

Yinghong Gu; Huanyu Li; Haohao Dong; Yi Zeng; Zhengyu Zhang; Neil G. Paterson; Phillip J. Stansfeld; Zhongshan Wang; Yizheng Zhang; Wenjian Wang; Changjiang Dong

All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the β-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB–BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane β-barrel of BamA to induce movement of the β-strands of the barrel and promote insertion of the nascent OMP.


Journal of Biological Chemistry | 2010

Structure and Functional Analysis of LptC, a Conserved Membrane Protein Involved in the Lipopolysaccharide Export Pathway in Escherichia coli

An X. Tran; Changjiang Dong; Chris Whitfield

LptC is a conserved bitopic inner membrane protein from Escherichia coli involved in the export of lipopolysaccharide from its site of synthesis in the cytoplasmic membrane to the outer membrane. LptC forms a complex with the ATP-binding cassette transporter, LptBFG, which is thought to facilitate the extraction of lipopolysaccharide from the inner membrane and release it into a translocation pathway that includes the putative periplasmic chaperone LptA. Cysteine modification experiments established that the catalytic domain of LptC is oriented toward the periplasm. The structure of the periplasmic domain is described at a resolution of 2.2-Å from x-ray crystallographic data. The periplasmic domain of LptC consists of a twisted boat structure with two β-sheets in apposition to each other. The β-sheets contain seven and eight antiparallel β-strands, respectively. This structure bears a high degree of resemblance to the crystal structure of LptA. Like LptA, LptC binds lipopolysaccharide in vitro. In vitro, LptA can displace lipopolysaccharide from LptC (but not vice versa), consistent with their locations and their proposed placement in a unidirectional export pathway.


The EMBO Journal | 2005

Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1

Linnan Shen; Huanting Liu; Changjiang Dong; Dimitris P. Xirodimas; James H. Naismith; Ronald T. Hay

NEDD8 (neural precursor cell expressed developmentally downregulated gene 8)‐specific protease NEDP1 processes preNEDD8 to its mature form and deconjugates NEDD8 from substrates such as p53 and cullins. Although NEDD8 and ubiquitin are highly related in sequence and structure, their attachment to a protein leads to different biological effects. It is therefore critical that NEDP1 discriminates between NEDD8 and ubiquitin, and this requires remarkable precision in molecular recognition. To determine the basis of this specificity, we have determined the crystal structure of NEDP1 in isolation and in a transition state complex with NEDD8. This reveals that NEDP1 is a cysteine protease of the Ulp family. Binding of NEDD8 induces a dramatic conformational change in a flexible loop that swings over the C‐terminus of NEDD8 locking it into an extended β‐structure optimal for catalysis. Structural, mutational and biochemical studies have identified key residues involved in molecular recognition. A single‐residue difference in the C‐terminus of NEDD8 and ubiquitin contributes significantly to the ability of NEDP1 to discriminate between them. In vivo analysis indicates that NEDP1 mutants perturb deNEDDylation of the tumour suppressor p53.

Collaboration


Dive into the Changjiang Dong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haohao Dong

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yinghong Gu

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Zhongshan Wang

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Hinh Ly

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Yuying Liang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl-Heinz van Pée

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhengyu Zhang

University of East Anglia

View shared research outputs
Researchain Logo
Decentralizing Knowledge