Changkai Jia
Academy of Medical Sciences, United Kingdom
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Changkai Jia.
Mediators of Inflammation | 2012
Changyou Li; Siyuan Li; Changkai Jia; Lingling Yang; Zicheng Song; Yiqiang Wang
Previous studies showed that several members of the S100A family are involved in neovascularization and tumor development. This study checked whether low concentrations of S100A8 or S100A9 has any effect on the behaviour of vascular endothelial cells. A human umbilical vascular endothelial cell (HUVEC) line was used to measure vascular endothelial cell bioactivity related to angiogenesis, such as cell proliferation, migration, and vessel formation. In the low concentration range up to 10 μg/mL, either each alone or in combination, S100A8 and S100A9 proteins promoted proliferation of HUVEC cells in a dose-dependent manner. The presence of both proteins in culture showed additive effects over each single protein. Both proteins enhanced HUVEC cells to migrate across the transwell membrane and to form tube-like structures on the Matrigel surface. When mixed in Matrigel and injected subcutaneously in Balb/c mice, both proteins increased vessel development in the gel plugs. Microarray assay of HUVEC cells treated with 10 μg/mL S100A8 revealed that ribosome pathway, pathogenic Escherichia coli infection pathway, apoptosis, and stress response genes were modulated by S100A8 treatment. We propose that S100A8 and S100A9 proteins from either infiltrating inflammatory cells or tumor cells play an important role in the interplay among inflammation, angiogenesis, and tumorigenesis.
European Journal of Immunology | 2013
Hongbo Zhang; Hongxia Li; Yuanyuan Li; Yanli Zou; Xiaomeng Dong; Wengang Song; Changkai Jia; Siyuan Li; Haijie Xi; Dongmin Liu; Yiqiang Wang
The pathogenesis of fungal infection in the cornea remains largely unclear. To understand how the immune system influences the progression of fungal infection in corneas, we inoculated immunocompetent BALB/c mice, neutrophil‐ or CD4+ T‐cell‐depleted BALB/c mice, and nude mice with Candida albicans. We found that only immunocompetent BALB/c mice developed typical Candida keratitis (CaK), while the other mouse strains lacked obvious clinical manifestations. Furthermore, CaK development was blocked in immunocompetent mice treated with anti‐IL‐17A or anti‐IL‐23p19 to neutralize IL‐17 activity. However, no significant effects were observed when Treg cells, γδ T cells, or IFN‐γ were immunodepleted. Upon infection, the corneas of BALB/c mice were infiltrated with IL‐17‐producing leukocytes, including neutrophils and, to a lesser degree, CD4+ T cells. In contrast, leukocyte recruitment to corneas was significantly diminished in nude mice. Indeed, nude mice produced much less chemokines (e.g. CXCL1, CXCL2, CXCL10, CXCL12, CCL2, and IL‐6) in response to inoculation. Remarkably, addition of CXCL2 during inoculation restored CaK induction in nude mice. In contrast to its therapeutic effect on CaK, neutralization of IL‐17 exacerbated Candida‐induced dermatitis in skin. We conclude that IL‐17, mainly produced by neutrophils and CD4+ T cells in the corneas, is essential in the pathogenesis of CaK.
International Journal of Ophthalmology | 2014
Shengwei Ren; Xia Qi; Changkai Jia; Yiqiang Wang
AIM To solidify the involvement of Saa-related pathway in corneal neovascularization (CorNV). The pathogenesis of inflammatory CorNV is not fully understood yet, and our previous study implicated that serum amyloid A (Saa) 1 (Saa1) and Saa3 were among the genes up-regulated upon CorNV induction in mice. METHODS Microarray data obtained during our profiling project on CorNV were analyzed for the genes encoding the four SAA family members (Saa1-4), six reported SAA receptors (formyl peptide receptor 2, Tlr2, Tlr4, Cd36, Scarb1, P2rx7) and seven matrix metallopeptidases (Mmp) 1a, 1b, 2, 3, 9, 10, 13 reportedly to be expressed upon SAA pathway activation. The baseline expression or changes of interested genes were further confirmed in animals with CorNV using molecular or histological methods. CorNV was induced in Balb/c and C57BL/6 mice by placing either three interrupted 10-0 sutures or a 2 mm filter paper soaked with sodium hydroxide in the central area of the cornea. At desired time points, the corneas were harvested for histology examination or for extraction of mRNA and protein. The mRNA levels of Saa1, Saa3, Fpr2, Mmp2 and Mmp3 in corneas were detected using quantitative reverse transcription-PCR, and SAA3 protein in tissues detected using immunohistochemistry or western blotting. RESULTS Microarray data analysis revealed that Saa1, Saa3, Fpr2, Mmp2, Mmp3 messengers were readily detected in normal corneas and significantly up-regulated upon CorNV induction. The changes of these five genes were confirmed with real-time PCR assay. On the contrary, other SAA members (Saa2, Saa4), other SAA receptors (Tlr2, Tlr4, Cd36, P2rx7, etc), or other Mmps (Mmp1a, Mmp1b, Mmp9, Mmp10, Mmp13) did not show consistent changes. Immunohistochemistry study and western blotting further confirmed the expression of SAA3 products in normal corneas as well as their up-regulation in corneas with CorNV. CONCLUSION SAA-FPR2 pathway composing genes were expressed in normal murine corneas and, upon inflammatory stimuli challenge to the corneas, their expressions were up-regulated, suggesting their roles in pathogenesis of CorNV. The potential usefulness of SAA-FPR2 targets in future management of CorNV-related diseases deserves investigation.
Alternative & Integrative Medicine | 2014
Lingling Yang; Wenxiao He; Huihua Qu; Changkai Jia; Yao Wang; Yiqiang Wang; Dongmin Liu
Neovascularization is often involved in many diseases and there is no effective treatment for this pathological process. In searching for potential therapies for neovascularization, we screened nineteen pre-selected small molecules isolated from herbal extracts for their possible anti-angiogenic effect in vitro and in vivo. We found that isoliquiritigenin, a chalconoid compound isolated from Chinese herb medicine licorice, potently inhibited vascular endothelial cell (EC) proliferation, migration, tube -like structure formation ex vivo. Western blot analysis shows that exposure of ECs to isoliquiritigenin inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. In Matrigel plug assay, isoliquiritigenin effectively blocked fibroblast growth factor-induced in vivo angiogenesis in mice. Consistently, topical application of isoliquiritigenin significantly inhibited chemical injury-induced corneal neovascularization in mice. Collectively, these results suggest that isoliquiritigenin may be a low-cost and effective natural agent to treat angiogenesis-dependent diseases
Gene | 2017
Changkai Jia; Feng Zhang; Ying Zhu; Xia Qi; Yiqiang Wang
Matrix-remodeling associated 7 (MXRA7) gene was first reported in 2002 and named so for its co-expression with several genes known to relate with matrix-remodeling. However, not any studies had been intentionally performed to characterize this gene. We started defining the functions of MXRA7 by integrating bioinformatics analysis and experimental study. Data mining of MXRA7 expression in BioGPS, Gene Expression Omnibus and EurExpress platforms highlighted high level expression of Mxra7 in murine ocular tissues. Real-time PCR was employed to measure Mxra7 mRNA in tissues of adult C57BL/6 mice and demonstrated that Mxra7 was preferentially expressed at higher level in retina, corneas and lens than in other tissues. Then the inflammatory corneal neovascularization (CorNV) model and fungal corneal infections were induced in Balb/c mice, and mRNA levels of Mxra7 as well as several matrix-remodeling related genes (Mmp3, Mmp13, Ecm1, Timp1) were monitored with RT-PCR. The results demonstrated a time-dependent Mxra7 under-expression pattern (U-shape curve along timeline), while all other matrix-remodeling related genes manifested an opposite changes pattern (dome-shape curve). When limited data from BioGPS concerning human MXRA7 gene expression in human tissues were looked at, it was found that ocular tissue was also the one expressing highest level of MXRA7. To conclude, integrative assay of MXRA7 gene expression in public databank as well as domestic animal models revealed a selective high expression MXRA7 in murine and human ocular tissues, and its change patterns in two corneal disease models implied that MXRA7 might play a role in pathological processes or diseases involving injury, neovascularization and would healing.
Molecular Vision | 2010
Shengwei Ren; Feng Zhang; Changyou Li; Changkai Jia; Siyuan Li; Haijie Xi; Hongbo Zhang; Lingling Yang; Yiqiang Wang
Molecular Vision | 2011
Changkai Jia; Wei Zhu; Shengwei Ren; Haijie Xi; Siyuan Li; Yiqiang Wang
Molecular Vision | 2010
Shengwei Ren; Ting Liu; Changkai Jia; Xia Qi; Yiqiang Wang
Experimental Eye Research | 2012
Wei Zhu; Xia Qi; Shengwei Ren; Changkai Jia; Zicheng Song; Yiqiang Wang
Experimental Eye Research | 2011
Hongbo Zhang; Changkai Jia; Haijie Xi; Siyuan Li; Lingling Yang; Yiqiang Wang