Changkao Mu
Ningbo University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Changkao Mu.
Developmental and Comparative Immunology | 2008
Chenghua Li; Jianmin Zhao; Linsheng Song; Changkao Mu; Huan Zhang; Yunchao Gai; Limei Qiu; Yundong Yu; Duojiao Ni; Kezhi Xing
Anti-lipopolysaccharide factor (ALF) represents one kind of basic proteins, which binds and neutralizes LPS and exhibits strong antibacterial activity against Gram-negative R-type bacteria. The ALF gene of Chinese mitten crab Eriocheir sinensis (Milne Edwards, 1853) (denoted as EsALF) was identified from haemocytes by expressed sequence tag (EST) and PCR approaches. The full-length cDNA of EsALF consisted of 700 nucleotides with a canonical polyadenylation signal-sequence AATAAA, a polyA tail, and an open-reading frame of 363bp encoding 120 amino acids. The high similarity of EsALF-deduced amino acid sequence shared with the ALFs from other species indicated that EsALF should be a member of ALF family. The mRNA expression of EsALF in the tissues of heart, gonad, gill, haemocytes, eyestalk and muscle was examined by Northern blot analysis and mRNA transcripts of EsALF were mainly detected in haemocytes, heart and gonad. The temporal expression of EsALF in haemocytes after Vibrio anguillarum challenge was recorded by quantitative real-time RT-PCR. The relative expression level of EsALF was up-regulated rapidly at 2 h post-injection and reached 3-fold to that in blank group. After a drastic decrease to the original level from 4 to 8 h, the expression level increased again and reached 4-fold to that in the blank group at 12 h post-injection. The genomic DNA sequence of EsALF gene consists of 1174 bp containing three exons and two introns. The coding sequence of the EsALF mature peptide was cloned and expressed in Escherichia coli BL21(DE3)-pLysS to further elucidate its biological functions. The purified recombinant product showed bactericidal activity against both Gram-positive (G+) and Gram-negative (G-) bacteria, which demonstrated that the rEsALF was a broad-spectrum antibacterial peptide. All these results indicated that EsALF was an acute-phase protein involved in the immune responses of Chinese mitten crab, and provided a potential therapeutic agent for disease control in aquaculture.
Fish & Shellfish Immunology | 2009
Huan Zhang; Lingling Wang; Linsheng Song; Xiaoyan Song; Bo Wang; Changkao Mu; Ying Zhang
The family of fibrinogen-related proteins (FREPs) is a group of proteins with fibrinogen-like domains. Many members of this family play important roles as pattern recognition receptors in innate immune responses. The cDNA of bay scallop Argopecten irradians FREP (designated as AiFREP) was cloned by rapid amplification of cDNA ends (RACE) method based on the expressed sequence tag (EST). The full-length cDNA of AiFREP was of 990bp. The open reading frame encoded a polypeptide of 251 amino acids, including a signal sequence and a 213 amino acids fibrinogen-like domain. The fibrinogen-like domain of AiFREP was highly similar to those of mammalian ficolins and other FREPs. The temporal expression of AiFREP mRNA in hemolymph was examined by fluorescent quantitative real-time PCR. The mRNA level of scallops challenged by Listonella anguillarum was significantly up-regulated, peaked to 9.39-fold at 9h after stimulation, then dropped back to 4.37-fold at 12h, while there was no significant change in the Micrococcus luteus challenged group in all periods of treatment. The function of AiFREP was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiFREP (rAiFREP) agglutinated chicken erythrocytes and human A, B, O-type erythrocytes. The agglutinating activities were calcium-dependent and could be inhibited by acetyl group-containing carbohydrates. rAiFREP also agglutinated Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria M. luteus in the presence of calcium ions. These results collectively suggested that AiFREP functions as a pattern recognition receptor in the immune response of bay scallop and contributed to nonself recognition in invertebrates, which would also provide clues for elucidating the evolution of the lectin pathway of the complement system.
Developmental and Comparative Immunology | 2011
Xiaoyan Song; Huan Zhang; Lingling Wang; Jianmin Zhao; Changkao Mu; Linsheng Song; Limei Qiu; Xiaolin Liu
Galectins are a family of β-galactoside-binding lectins that specifically bind to β-galactoside residues and play crucial roles in innate immune responses of invertebrates and vertebrates. The cDNA of bay scallop Argopecten irradians galectin (designated as AiGal2) was cloned by rapid amplification of cDNA ends (RACE) method based on the expressed sequence tag (EST). The full-length cDNA of AiGal2 was of 2137 bp. The open reading frame encoded a polypeptide of 555 amino acids containing four carbohydrate-recognition domains. The deduced amino acid sequence and multi-domain organization of AiGal2 were highly similar to those of mollusk galectins. A typical galectin fold in β-sandwich arrangement was identified in the potential tertiary structure of all the four CRDs in AiGal2. The mRNA transcripts of AiGal2 were found to be constitutively expressed in a wide range of tissues and mainly in hepatopancreas, adductor muscle and kidney. After scallops were challenged by Vibrio anguillarum or Micrococcus luteus, the mRNA expression level of AiGal2 was up-regulated significantly, while it did not changed remarkably after Pichia pastoris challenge. The recombined AiGal2 (rAiGal2) exhibited strong activity to agglutinate E. coli, V. anguillarum, Vibrio fluvialis, Edwardsiella tarda and M. luteus, and the agglutinating activities could be inhibited by both d-galactose and lactose. The in vitro encapsulation assay revealed that rAiGal2 could bind to hemocytes and enhanced its encapsulation of agarose beads. These results collectively suggested that AiGal2 functioned as a pattern recognition receptor in immune defense and contributed to the non-self recognition and elimination in cellular immune response of bay scallop.
Fish & Shellfish Immunology | 2010
Xiaoyan Song; Huan Zhang; Jianmin Zhao; Lingling Wang; Limei Qiu; Changkao Mu; Xiaolin Liu; Lihua Qiu; Linsheng Song
Galectins are a family of beta-galactoside-binding lectins which play crucial roles in innate immunity of vertebrates and invertebrates. In the present study, the cDNA of a galectin with multiple carbohydrate-recognition domains (CRDs) was cloned from bay scallop Argopectens irradians (designated AiGal1) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of AiGal1 was of 2235 nucleotides, encoding a polypeptide of 549 amino acids. SMART program analysis revealed that AiGal1 contained four galectin CRDs, and all the CRDs contained the two consensus motifs essential for ligand-binding. Quantitative real-time PCR was employed to investigate the tissue distribution of AiGal1 mRNA and temporal expression in haemocytes of scallops challenged with Vibrio anguillarum, Micrococcus luteus and Pichia pastoris. The AiGal1 mRNA could be detected in all tested tissues with the highest expression level in hepatopancreas. After challenged by V. anguillarum and M. luteus, the expression level of AiGal1 mRNA was both up-regulated and reached the maximum level at 9 h (1.52 fold, P < 0.05) and 18 h (2.89 fold, P < 0.01) post challenge, respectively. However, there was no significant difference in the mRNA expression of AiGal1 in haemocytes after P. pastoris challenge (P > 0.05). These results collectively indicated that AiGal1 was a new member of the galectin family and involved in the immune responses against bacterial infection.
Gene | 2013
Mengmeng Huang; Xiaoyan Song; Jianmin Zhao; Changkao Mu; Lingling Wang; Huan Zhang; Zhi Zhou; Xiaolin Liu; Linsheng Song
C-type lectins are a family of Ca(2+)-dependent carbohydrate-binding proteins playing crucial roles in innate immunity of vertebrates and invertebrates. In the present study, the cDNA of a C-type lectin with one carbohydrate-recognition domain (CRD) of 127 amino acids was cloned from bay scallop Argopecten irradians (designated AiCTL-3) by rapid amplification of cDNA end (RACE) techniques based on expressed sequence tag (EST) analysis. The mRNA transcripts of AiCTL-3 could be detected in all the tested tissues including hepatopancreas, gonad, adductor muscle, heart, hemocytes, mantle and gill, with the highest expression level in hepatopancreas. After the challenges with Vibrio anguillarum and Micrococcus luteus, the mRNA expression level of AiCTL-3 was obviously up-regulated and reached the maximum level at 9h (11.87fold, P<0.01, and 20.02-fold, P<0.05, respectively). The recombinant AiCTL-3 (designated as rAiCTL-3) could bind LPS, PGN, and glucan in vitro, but could not bind mannan. And it also bound Gram-positive bacteria Staphylococcus aureus as well as Gram-negative bacteria Escherichia coli and V. anguillarum. With a Ca(2+) binding site 2 EPN (Glu-Pro-Asn) motif, rAiCTL-3 could bind both mannose and galactose which was quite different from those in vertebrate. Meanwhile, it could significantly enhance the phagocytosis of scallop hemocytes in vitro. The results clearly suggested that AiCTL-3 could serve not only as a PRR participated in the immune response against various PAMPs and bacteria in non-self recognition via mannose/galactose binding specificity but an opsonin playing an important part in clearance of invaders.
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2015
Lei Wei; Qing Wang; Xuanxuan Ning; Changkao Mu; Chunlin Wang; Ruiwen Cao; Huifeng Wu; Ming Cong; Fei Li; Chenglong Ji; Jianmin Zhao
Ocean acidification (OA) has been found to affect an array of normal physiological processes in mollusks, especially posing a significant threat to the fabrication process of mollusk shell. In the current study, the impact of exposure to elevated pCO2 condition was investigated in mantle tissue of Crassostrea gigas by an integrated metabolomic and proteomic approach. Analysis of metabolome and proteome revealed that elevated pCO2 could affect energy metabolism in oyster C. gigas, marked by differentially altered ATP, succinate, MDH, PEPCK and ALDH levels. Moreover, the up-regulated calponin-2, tropomyosins and myosin light chains indicated that elevated pCO2 probably caused disturbances in cytoskeleton structure in mantle tissue of oyster C. gigas. This work demonstrated that a combination of proteomics and metabolomics could provide important insights into the effects of OA at molecular levels.
PLOS ONE | 2013
Qing Wang; Chunyan Wang; Changkao Mu; Huifeng Wu; Linbao Zhang; Jianmin Zhao
A c-type lysozyme (named as MgCLYZ) gene was cloned from the mussel Mytilus galloprovincialis. Blast analysis indicated that MgCLYZ was a salivary c-type lysozyme which was mainly found in insects. The nucleotide sequence of MgCLYZ was predicted to encode a polypeptide of 154 amino acid residues with the signal peptide comprising the first 24 residues. The deduced mature peptide of MgCLYZ was of a calculated molecular weight of 14.4 kD and a theoretical isoelectric point (pI) of 8.08. Evolution analysis suggested that bivalve branch of the invertebrate c-type lysozymes phylogeny tree underwent positive selection during evolution. By quantitative real-time RT-PCR (qRT-PCR) analysis, MgCLYZ transcript was widely detected in all examined tissues and responded sensitively to bacterial challenge in hemocytes and hepatopancreas. The optimal temperature and pH of recombinant MgCLYZ (rMgCLYZ) were 20°C and 4, respectively. The rMgCLYZ displayed lytic activities against Gram-positive bacteria including Micrococcus luteus and Staphyloccocus aureus, and Gram-negative bacteria including Vibrio anguillarum, Enterobacter cloacae, Pseudomonas putida, Proteus mirabilis and Bacillus aquimaris. These results suggest that MgCLYZ perhaps play an important role in innate immunity of M. galloprovincialis, and invertebrate c-type lysozymes might be under positive selection in a species-specific manner during evolution for undergoing adaptation to different environment and diverse pathogens.
Fish & Shellfish Immunology | 2013
Chunyan Wang; Jianmin Zhao; Changkao Mu; Qing Wang; Huifeng Wu; Chunlin Wang
Glutathione S-transferases (GSTs) are phase II enzymes involved in the regulation of redox homeostasis and innate immune responses against bacterial infection, which also play important roles in the detoxification of xenobiotics. In this study, we reported four genes of the GST family (named MgGSTα, MgGSTS1, MgGSTS2, and MgGSTS3, respectively) from Mytilus galloprovincialis. MgGSTα, MgGSTS1, MgGSTS2, and MgGSTS3 consisted of open reading frame (ORF) of 648 bp, 612 bp, 621 bp and 609 bp respectively, which encoded proteins of 216, 204, 207 and 203 amino acids residues, respectively. Sequence analysis showed that the predicted protein sequence of MgGSTs contained the conserved domain of the GST_N and GST_C. Alignment analysis indicated that the MgGSTs were divided into two types, one was of alpha GST, and the others were of sigma class. Tissue distribution study revealed that MgGSTα, MgGSTS2, MgGSTS3 transcripts were highly expressed in hemocytes, while MgGSTS1 mRNA was most abundantly expressed in hepatopancreas. After bacterial challenge, the expression level of these MgGSTs in hemocytes were all significantly higher than that of the control group. These results suggested that MgGSTs might play important roles in the modulation of immune response in M. galloprovincialis.
PLOS ONE | 2015
Yue-Yue Zhou; Xiong-Fei Ji; Jian-Ping Fu; Xiao-Juan Zhu; Ronghua Li; Changkao Mu; Chunlin Wang; Weiwei Song
D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.
Developmental and Comparative Immunology | 2009
Yunchao Gai; Jianmin Zhao; Linsheng Song; Lingling Wang; Limei Qiu; Xuanxuan Ning; Xiangdong Zheng; Yi Zhang; Changkao Mu; Ying Zhang; Ling Li
Recently, beta-thymosin-like proteins with multiple thymosin domains (defined as thymosin-repeated proteins) have been identified from invertebrate. In the present study, the cDNAs of two thymosin-repeated proteins (designated EsTRP1 and EsTRP2) were cloned from Chinese mitten crab by expressed sequence tags (EST) techniques. BLAST analysis presented three and two thymosin domains in EsTRP1 and EsTRP2, respectively, with the identities amongst the five domains varying from 47% to 100%. Both EsTRP1 and EsTRP2 shared high similarities with previously identified vertebrate beta-thymosins and invertebrate thymosin-repeated proteins (TRPs) with the identities ranging from 43% to 78%, indicating that EsTRPs were new members of the beta-thymosin family. Real-time RT-PCR assay was adopted to determine the tissue distribution of EsTRPs and their temporal expression profile in hemocytes after pathogen stimulation and injury challenge. The expression of EsTRP1 transcript was predominantly detectable in the tissues of hemocytes, hepatopancreas and gonad with the highest expression in hemocytes, while the highest expression level of EsTRP2 was found in heart. EsTRP1 mRNA expression in hemocytes significantly increased at 3 and 48h after Listonella anguillarum challenge, but there was no significant variation in EsTRP2 temporal expression profile. The injury challenge reduced the mRNA expression of EsTRPs, with the down-regulation of EsTRP2 expression occurred earlier than that of EsTRP1. The cDNA fragments encoding their mature peptides of EsTRP1 and EsTRP2 were recombined and expressed in Escherichia coli. The activities of recombinant proteins (rEsTRP1 and rEsTRP2) were examined by MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide) and lysoplate assay. rEsTRP2 could significantly accelerate the growth of human hepatocellular carcinoma cell line, but there was no significant effect of rEsTRP1 on the tumor cell proliferation. Both rEsTRP1 and rEsTRP2 did not possess the ability of killing Micrococcus luteus and L. anguillarum. The differences in the tissue distribution of mRNA transcripts, the response to pathogen stimulation and injury challenge, and the effect of recombinant proteins on human cell proliferation, indicated that there were functional diversity between the two structurally different molecules, EsTRP1 and EsTRP2.