Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changkyu Gu is active.

Publication


Featured researches published by Changkyu Gu.


The EMBO Journal | 2010

Direct dynamin–actin interactions regulate the actin cytoskeleton

Changkyu Gu; Suma Yaddanapudi; Astrid Weins; Teresia Osborn; Jochen Reiser; Martin R. Pollak; John H. Hartwig; Sanja Sever

The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase‐dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin‐binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin‐capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin‐CPs.


Journal of Clinical Investigation | 2011

CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival

Suma Yaddanapudi; Mehmet M. Altintas; Andreas D. Kistler; Isabel Fernandez; Clemens C. Möller; Changli Wei; Vasil Peev; Jan Flesche; Anna Lena Forst; Jing Li; Jaakko Patrakka; Zhijie Xiao; Florian Grahammer; Mario Schiffer; Tobias Lohmüller; Thomas Reinheckel; Changkyu Gu; Tobias B. Huber; Wenjun Ju; Markus Bitzer; Maria Pia Rastaldi; Phillip Ruiz; Karl Tryggvason; Andrey S. Shaw; Christian Faul; Sanja Sever; Jochen Reiser

Kidney podocytes are highly differentiated epithelial cells that form interdigitating foot processes with bridging slit diaphragms (SDs) that regulate renal ultrafiltration. Podocyte injury results in proteinuric kidney disease, and genetic deletion of SD-associated CD2-associated protein (CD2AP) leads to progressive renal failure in mice and humans. Here, we have shown that CD2AP regulates the TGF-β1-dependent translocation of dendrin from the SD to the nucleus. Nuclear dendrin acted as a transcription factor to promote expression of cytosolic cathepsin L (CatL). CatL proteolyzed the regulatory GTPase dynamin and the actin-associated adapter synaptopodin, leading to a reorganization of the podocyte microfilament system and consequent proteinuria. CD2AP itself was proteolyzed by CatL, promoting sustained expression of the protease during podocyte injury, and in turn increasing the apoptotic susceptibility of podocytes to TGF-β1. Our study identifies CD2AP as the gatekeeper of the podocyte TGF-β response through its regulation of CatL expression and defines a molecular mechanism underlying proteinuric kidney disease.


Molecular and Cellular Biology | 2001

The EphA8 Receptor Regulates Integrin Activity through p110γ Phosphatidylinositol-3 Kinase in a Tyrosine Kinase Activity-Independent Manner

Changkyu Gu; Soochul Park

ABSTRACT Recent genetic studies suggest that ephrins may function in a kinase-independent Eph receptor pathway. Here we report that expression of EphA8 in either NIH 3T3 or HEK293 cells enhanced cell adhesion to fibronectin via α5β1- or β3integrins. Interestingly, a kinase-inactive EphA8 mutant also markedly promoted cell attachment to fibronectin in these cell lines. Using a panel of EphA8 point mutants, we have demonstrated that EphA8 kinase activity does not correlate with its ability to promote cell attachment to fibronectin. Analysis using EphA8 extracellular and intracellular domain mutants has revealed that enhanced cell adhesion is dependent on ephrin A binding to the extracellular domain and the juxtamembrane segment of the cytoplasmic domain of the receptor. EphA8-promoted adhesion was efficiently inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor. Additionally, we found that EphA8 had associated PI 3-kinase activity and that the p110γ isoform of PI 3-kinase is associated with EphA8. In vitro binding experiments revealed that the EphA8 juxtamembrane segment was sufficient for the formation of a stable complex with p110γ. Similar results were obtained in assay using cells stripped of endogenous ephrin A ligands by treatment with preclustered ephrin A5-Fc proteins. In addition, a membrane-targeted lipid kinase-inactive p110γ mutant was demonstrated to stably associate with EphA8 and suppress EphA8-promoted cell adhesion to fibronectin. Taken together, these results suggest the presence of a novel mechanism by which the EphA8 receptor localizes p110γ PI 3-kinase to the plasma membrane in a tyrosine kinase-independent fashion, thereby allowing access to lipid substrates to enable the signals required for integrin-mediated cell adhesion.


Nature Medicine | 2015

Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models.

Mario Schiffer; Beina Teng; Changkyu Gu; Valentina A. Shchedrina; Marina V. Kasaikina; Vincent A. Pham; Nils Hanke; Song Rong; Faikah Gueler; Patricia Schroder; Irini Tossidou; Joon Keun Park; Lynne Staggs; Hermann Haller; Sergej Erschow; Denise Hilfiker-Kleiner; Changli Wei; Chuang Chen; Nicholas J. Tardi; Samy Hakroush; Martin K. Selig; Aleksandr Vasilyev; Sandra Merscher; Jochen Reiser; Sanja Sever

Dysregulation of the actin cytoskeleton in podocytes represents a common pathway in the pathogenesis of proteinuria across a spectrum of chronic kidney diseases (CKD). The GTPase dynamin has been implicated in the maintenance of cellular architecture in podocytes through its direct interaction with actin. Furthermore, the propensity of dynamin to oligomerize into higher-order structures in an actin-dependent manner and to cross-link actin microfilaments into higher-order structures has been correlated with increased actin polymerization and global organization of the actin cytoskeleton in the cell. We found that use of the small molecule Bis-T-23, which promotes actin-dependent dynamin oligomerization and thus increased actin polymerization in injured podocytes, was sufficient to improve renal health in diverse models of both transient kidney disease and CKD. In particular, administration of Bis-T-23 in these renal disease models restored the normal ultrastructure of podocyte foot processes, lowered proteinuria, lowered collagen IV deposits in the mesangial matrix, diminished mesangial matrix expansion and extended lifespan. These results further establish that alterations in the actin cytoskeleton of kidney podocytes is a common hallmark of CKD, while also underscoring the substantial regenerative potential of injured glomeruli and identifying the oligomerization cycle of dynamin as an attractive potential therapeutic target to treat CKD.


Oncogene | 2005

The EphA8 receptor induces sustained MAP kinase activation to promote neurite outgrowth in neuronal cells

Changkyu Gu; Sungbo Shim; Jongdae Shin; Jieun Kim; Jonghoon Park; Kyuhyung Han; Soochul Park

Recent studies in our laboratory demonstrate that ligand-mediated activation of the EphA8 receptor critically regulates cell adhesion and migration. In this report, we show that the EphA8 receptor induces neurite outgrowth in NG108-15 cells in the absence of ligand stimulation. Using various deletion mutants lacking specific intracytoplasmic regions, we confirm that the tyrosine kinase domain of EphA8 is important for inducing neurite outgrowth. However, the tyrosine kinase activity of EphA8 is not crucial for neurite outgrowth induction. Treatment with various inhibitors further reveals that the mitogen-activated protein kinase (MAPK) signaling pathway is critical for neurite outgrowth induced by EphA8. Consistent with these results, EphA8 expression induced a sustained increase in the activity of MAPK, whereas ligand-mediated EphA8 activation had no further modulatory effects on MAP kinase activity. Additionally, activated MAPK relocalized from the cytoplasm to the nucleus in response to EphA8 transfection. These results collectively suggest that the EphA8 receptor is capable of inducing a sustained increase in MAPK activity, thereby promoting neurite outgrowth in neuronal cells.


Journal of Biological Chemistry | 2013

Transient Receptor Potential Channel 6 (TRPC6) Protects Podocytes during Complement-mediated Glomerular Disease

Andreas D. Kistler; Geetika Singh; Mehmet M. Altintas; Hao Yu; Isabel Fernandez; Changkyu Gu; Cory Wilson; Sandeep Kumar Srivastava; Alexander Dietrich; Katherina Walz; Dontscho Kerjaschki; Phillip Ruiz; Stuart E. Dryer; Sanja Sever; Amit K. Dinda; Christian Faul; Jochen Reiser

Background: Activating mutations of the calcium channel TRPC6 lead to adult onset genetic kidney disease. Results: In acquired kidney diseases, increased TRPC6 expression protects kidney podocytes against complement-mediated injury. Conclusion: The effect, protective or nocuous, of TRPC6 in podocytes is context dependent. Significance: Pharmacologic inhibition of TRPC6 in acquired kidney disease may be detrimental. Gain-of-function mutations in the calcium channel TRPC6 lead to autosomal dominant focal segmental glomerulosclerosis and podocyte expression of TRPC6 is increased in some acquired human glomerular diseases, particularly in membranous nephropathy. These observations led to the hypothesis that TRPC6 overactivation is deleterious to podocytes through pathological calcium signaling, both in genetic and acquired diseases. Here, we show that the effects of TRPC6 on podocyte function are context-dependent. Overexpression of TRPC6 alone did not directly affect podocyte morphology and cytoskeletal structure. Unexpectedly, however, overexpression of TRPC6 protected podocytes from complement-mediated injury, whereas genetic or pharmacological TRPC6 inactivation increased podocyte susceptibility to complement. Mechanistically, this effect was mediated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. Podocyte-specific TRPC6 transgenic mice showed stronger CaMKII activation, reduced podocyte foot process effacement and reduced levels of proteinuria during nephrotoxic serum nephritis, whereas TRPC6 null mice exhibited reduced CaMKII activation and higher levels of proteinuria compared with wild type littermates. Human membranous nephropathy biopsy samples showed podocyte staining for active CaMKII, which correlated with the degree of TRPC6 expression. Together, these data suggest a dual and context dependent role of TRPC6 in podocytes where acute activation protects from complement-mediated damage, but chronic overactivation leads to focal segmental glomerulosclerosis.


Traffic | 2013

Dynamin Rings: Not Just for Fission

Sanja Sever; Joann Chang; Changkyu Gu

The GTPase dynamin has captivated researchers for over two decades, even managing to establish its own research field. Dynamins allure is partly due to its unusual biochemical properties as well as its essential role in multiple cellular processes, which include the regulation of clathrin‐mediated endocytosis and of actin cytoskeleton. On the basis of the classic model, dynamin oligomerization into higher order oligomers such as rings and helices directly executes the final fission reaction in endocytosis, which results in the generation of clathrin‐coated vesicles. Dynamins role in the regulation of actin cytoskeleton is mostly explained by its interactions with a number of actin‐binding and ‐regulating proteins; however, the molecular mechanism of dynamins action continues to elude us. Recent insights into the mechanism and role of dynamin oligomerization in the regulation of actin polymerization point to a novel role for dynamin oligomerization in the cell.


Traffic | 2014

Regulation of dynamin oligomerization in cells: the role of dynamin-actin interactions and its GTPase activity.

Changkyu Gu; Joann Chang; Valentina A. Shchedrina; Vincent A. Pham; John H. Hartwig; Worawit Suphamungmee; William Lehman; Bradley T. Hyman; Brian J. Bacskai; Sanja Sever

Dynamin is a 96‐kDa protein that has multiple oligomerization states that influence its GTPase activity. A number of different dynamin effectors, including lipids, actin filaments, and SH3‐domain‐containing proteins, have been implicated in the regulation of dynamin oligomerization, though their roles in influencing dynamin oligomerization have been studied predominantly in vitro using recombinant proteins. Here, we identify higher order dynamin oligomers such as rings and helices in vitro and in live cells using fluorescence lifetime imaging microscopy (FLIM). FLIM detected GTP‐ and actin‐dependent dynamin oligomerization at distinct cellular sites, including the cell membrane and transition zones where cortical actin transitions into stress fibers. Our study identifies a major role for direct dynamin–actin interactions and dynamins GTPase activity in the regulation of dynamin oligomerization in cells.


DNA and Cell Biology | 2000

Genomic Structure and Promoter Analysis of the Mouse EphA8 Receptor Tyrosine Kinase Gene

Jaemin Jeong; Sunga Choi; Changkyu Gu; Hansoo Lee; Soochul Park

The gene encoding the mouse EphA8 receptor tyrosine kinase has been isolated from a mouse genomic library, and its complete genomic structure has been determined. This gene spans approximately 28 kb and consists of 17 exons. This gene structure is similar to the structure of the chick EphB2 (Cek5) gene, except for one intron present between the first two exons encoding the EphA8 kinase domain. This difference may reflect an evolutionary divergence of the catalytic domain between EphA and EphB subgroup receptors. The site for transcription initiation has been mapped to the 19th nucleotide upstream from the translation start codon ATG. A feature of this gene is an unmethylated CpG island spanning exon 1 and the flanking sequence. The putative promoter of the EphA8 gene lacks a TATA box and contains multiple copies of the sequence GGGCGG, the core sequence of the putative Sp1-binding site. The 3.5-kb upstream genomic region containing part of the first exon showed strong promoter activity in NG108-15 neuroblastoma cells but much less in 293T cells, suggesting that this fragment is sufficient for neural cell-directed promoter activity. By deleting the genomic region containing the five GC boxes, it was shown that the minimal promoter region is primarily comprised of five copies of the Sp1-binding site located upstream from the transcription initiation site. Finally, in situ RNA hybridization studies revealed a very specific pattern of EphA8 gene expression restricted to the rostral region of midbrain tectum during embryonic development. Isolation of a functional promoter for the EphA8 gene is a first step in understanding how expression of this gene is controlled at the molecular level.


Journal of The American Society of Nephrology | 2017

Dynamin Autonomously Regulates Podocyte Focal Adhesion Maturation

Changkyu Gu; Ha Won Lee; Garrett Garborcauskas; Jochen Reiser; Vineet Gupta; Sanja Sever

Rho family GTPases, the prototypical members of which are Cdc42, Rac1, and RhoA, are molecular switches best known for regulating the actin cytoskeleton. In addition to the canonical small GTPases, the large GTPase dynamin has been implicated in regulating the actin cytoskeleton via direct dynamin-actin interactions. The physiologic role of dynamin in regulating the actin cytoskeleton has been linked to the maintenance of the kidney filtration barrier. Additionally, the small molecule Bis-T-23, which promotes actin-dependent dynamin oligomerization and thus, increases actin polymerization, improved renal health in diverse models of CKD, implicating dynamin as a potential therapeutic target for the treatment of CKD. Here, we show that treating cultured mouse podocytes with Bis-T-23 promoted stress fiber formation and focal adhesion maturation in a dynamin-dependent manner. Furthermore, Bis-T-23 induced the formation of focal adhesions and stress fibers in cells in which the RhoA signaling pathway was downregulated by multiple experimental approaches. Our study suggests that dynamin regulates focal adhesion maturation by a mechanism parallel to and synergistic with the RhoA signaling pathway. Identification of dynamin as one of the essential and autonomous regulators of focal adhesion maturation suggests a molecular mechanism that underlies the beneficial effect of Bis-T-23 on podocyte physiology.

Collaboration


Dive into the Changkyu Gu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen Reiser

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changli Wei

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehmet M. Altintas

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey S. Shaw

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge