Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changlin Zhang is active.

Publication


Featured researches published by Changlin Zhang.


Journal of Pineal Research | 2017

Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways.

Yue Gao; Xiangsheng Xiao; Changlin Zhang; Wendan Yu; Wei Guo; Zhifeng Zhang; Zhenglin Li; Xu Feng; Jiaojiao Hao; Kefang Zhang; Bingyi Xiao; Miao Chen; Wenlin Huang; Shunbin Xiong; Xiaojun Wu; Wuguo Deng

5‐Fluorouracil (5‐FU) is one of the most commonly used chemotherapeutic agents in colon cancer treatment, but has a narrow therapeutic index limited by its toxicity. Melatonin exerts antitumor activity in various cancers, but it has never been combined with 5‐FU as an anticolon cancer treatment to improve the chemotherapeutic effect of 5‐FU. In this study, we assessed such combinational use in colon cancer and investigated whether melatonin could synergize the antitumor effect of 5‐FU. We found that melatonin significantly enhanced the 5‐FU‐mediated inhibition of cell proliferation, colony formation, cell migration and invasion in colon cancer cells. We also found that melatonin synergized with 5‐FU to promote the activation of the caspase/PARP‐dependent apoptosis pathway and induce cell cycle arrest. Further mechanism study demonstrated that melatonin synergized the antitumor effect of 5‐FU by targeting the PI3K/AKT and NF‐κB/inducible nitric oxide synthase (iNOS) signaling. Melatonin in combination with 5‐FU markedly suppressed the phosphorylation of PI3K, AKT, IKKα, IκBα, and p65 proteins, promoted the translocation of NF‐κB p50/p65 from the nuclei to cytoplasm, abrogated their binding to the iNOS promoter, and thereby enhanced the inhibition of iNOS signaling. In addition, pretreatment with a PI3K‐ or iNOS‐specific inhibitor synergized the antitumor effects of 5‐FU and melatonin. Finally, we verified in a xenograft mouse model that melatonin and 5‐FU exerted synergistic antitumor effect by inhibiting the AKT and iNOS signaling pathways. Collectively, our study demonstrated that melatonin synergized the chemotherapeutic effect of 5‐FU in colon cancer through simultaneous suppression of multiple signaling pathways.


Oncotarget | 2016

Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells

Jian Jun Lu; Lingyi Fu; Zhipeng Tang; Changlin Zhang; Lijun Qin; Jingshu Wang; Zhenlong Yu; Dingbo Shi; Xiangsheng Xiao; Fangyun Xie; Wenlin Huang; Wuguo Deng

Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated inhibitions of cell proliferation, colony formation and cell migration, thereby enhancing the sensitivities of lung cancer cells to berberine. Melatonin also markedly increased apoptosis induced by berberine. Further mechanism study showed that melatonin promoted the cleavage of caspse-9 and PARP, enhanced the inhibition of Bcl2, and triggered the releasing of cytochrome C (Cyto C), thereby increasing the berberine-induced apoptosis. Melatonin also enhanced the berberine-mediated inhibition of telomerase reverses transcriptase (hTERT) by down-regulating the expression of AP-2β and its binding on hTERT promoter. Moreover, melatonin enhanced the berberine-mediated inhibition of cyclooxygenase 2 (COX-2) by inhibiting the nuclear translocation of NF-κB and its binding on COX-2 promoter. Melatonin also increased the berberine-mediated inhibition of the phosphorylated Akt and ERK. Collectively, our results demonstrated that melatonin enhanced the antitumor activity of berberine by activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK signaling pathways. Our findings provide new insights in exploring the potential therapeutic strategies and novel targets for lung cancer treatment.


Oncotarget | 2016

Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth.

Lijun Qin; Yun Tian; Zhenlong Yu; Dingbo Shi; Jingshu Wang; Changlin Zhang; Ruoyu Peng; Xuezhen Chen; Congcong Liu; Yiming Chen; Wenlin Huang; Wuguo Deng

Pyruvate dehydrogenase kinase-1 (PDK1), a key metabolic enzyme involved in aerobic glycolysis, is highly expressed in many solid tumors. Small molecule compound DAP (2,2-dichloroacetophenone) is a potent inhibitor of PDK1. Whether targeting PDK1 with DAP can inhibit acute myeloid leukemia (AML) and how it works remains unknown. In this study, we evaluated the effect of inhibition of PDK1 with DAP on cell growth, apoptosis and survival in AML cells and identified the underlying mechanisms. We found that treatment with DAP significantly inhibited cell proliferation, increased apoptosis induction and suppressed autophagy in AML cells in vitro, and inhibited tumor growth in an AML mouse model in vivo. We also showed that inhibition of PDK1 with DAP increased the cleavage of pro-apoptotic proteins (PARP and Caspase 3) and decreased the expression of the anti-apoptotic proteins (BCL-xL and BCL-2) and autophagy regulators (ULK1, Beclin-1 and Atg). In addition, we found that DAP inhibited the PI3K/Akt signaling pathway. Furthermore, we demonstrated that PDK1 interacted with ULK1, BCL-xL and E3 ligase CBL-b in AML cells, and DPA treatment could inhibit the interactions. Collectively, our results indicated that targeting PDK1 with DAP inhibited AML cell growth via multiple signaling pathways and suggest that targeting PDK1 may be a promising therapeutic strategy for AMLs.


Oncotarget | 2016

KLF4 downregulates hTERT expression and telomerase activity to inhibit lung carcinoma growth

Wenxian Hu; Yunlu Jia; Xiangsheng Xiao; Kezhen Lv; Yongxia Chen; Linbo Wang; Xiao Luo; Tianze Liu; Wenbin Li; Yixin Li; Changlin Zhang; Zhenglong Yu; Wenlin Huang; Bing Sun; Wu guo Deng

Krüppel-like factor 4 (KLF4) is a transcription factor that contributes to diverse cellular processes and serves as a tumor suppressor or oncogene in various cancers. Previously, we have reported on the tumor suppressive function of KLF4 in lung cancer; however, its precise regulatory mechanism remains elusive. In this study, we found that KLF4 negatively regulated hTERT expression and telomerase activity in lung cancer cell lines and a mouse model. In addition, the KLF4 and hTERT expression levels were significantly related to the clinicopathological features of lung cancer patients. Promoter reporter analyses revealed the decreased hTERT promoter activity in cells infected with Ad-KLF4, and chromatin immunoprecipitation analysis demonstrated that endogenous KLF4 directly bound to the promoter region of hTERT. Furthermore, the MAPK signaling pathway was revealed to be involved in the KLF4/hTERT modulation pathway. Forced expression of KLF4 profoundly attenuated lung cell proliferation and cancer formation in a murine model. Moreover, hTERT overexpression can partially rescue the KLF4-mediated suppressive effect in lung cancer cells. Taken together, these results demonstrate that KLF4 suppresses lung cancer growth by inhibiting hTERT and MAPK signaling. Additionally, the KLF4/hTERT/MAPK pathway is a potential new therapeutic target for human lung cancer.


Cancer Letters | 2016

Cleavage and polyadenylation specific factor 4 targets NF-κB/cyclooxygenase-2 signaling to promote lung cancer growth and progression

Canhui Yi; Yan Wang; Changlin Zhang; Shilei Zhao; Tianze Liu; Wenbin Li; Yina Liao; Xu Feng; Jiaojiao Hao; Yue Gao; Wendan Yu; Yiming Chen; Chao Zhang; Wei Guo; Bing Tang; Wuguo Deng

Overexpression of cyclooxygenase 2 (COX-2) is frequently found in early and advanced lung cancers. However, the precise regulatory mechanism of COX-2 in lung cancers remains unclear. Here we identified cleavage and polyadenylation specific factor 4 (CPSF4) as a new regulatory factor for COX-2 and demonstrated the role of the CPSF4/COX-2 signaling pathway in the regulation of lung cancer growth and progression. Overexpression or knockdown of CPSF4 up-regulated or suppressed the expression of COX-2 at mRNA and protein levels, and promoted or inhibited cell proliferation, migration and invasion in lung cancer cells. Inhibition or induction of COX-2 reversed the CPSF4-mediated regulation of lung cancer cell growth. Cancer cells with CPSF4 overexpression or knockdown exhibited increased or decreased expression of p-IKKα/β and p-IκBα, the translocation of p50/p65 from the cytoplasm to the nucleus, and the binding of p65 on COX-2 promoter region. In addition, CPSF4 was found to bind to COX-2 promoter sequences directly and activate the transcription of COX-2. Silencing of NF-κB expression or blockade of NF-κB activity abrogated the binding of CPSF4 on COX-2 promoter, and thereby attenuated the CPSF4-mediated up-regulation of COX-2. Moreover, CPSF4 was found to promote lung tumor growth and progression by up-regulating COX-2 expression in a xenograft lung cancer mouse model. CPSF4 overexpression or knockdown promoted or inhibited tumor growth in mice, while such regulation of tumor growth mediated by CPSF4 could be rescued through the inhibition or activation of COX-2 signaling. Correspondingly, CPSF4 overexpression or knockdown also elevated or attenuated COX-2 expression in tumor tissues of mice, while treatment with a COX-2 inducer LPS or a NF-κB inhibitor reversed this elevation or attenuation. Furthermore, we showed that CPSF4 was positively correlated with COX-2 levels in tumor tissues of lung cancer patients. Simultaneous high expression of CPSF4 and COX-2 proteins predicted poor prognosis of patients with lung cancers. Our results therefore demonstrated a novel mechanism for the transcriptional regulation of COX-2 by CPSF4 in lung cancer, and also offer a potential therapeutic target for lung cancers bearing aberrant activation of CPSF4/COX-2 signaling.


Cell Death and Disease | 2017

KMT2A promotes melanoma cell growth by targeting hTERT signaling pathway

Changlin Zhang; Chen Song; Tianze Liu; Ranran Tang; Miao Chen; Fan Gao; Binyi Xiao; Ge Qin; Fen Shi; Wenbin Li; Yixin Li; Xiaoyan Fu; Dingbo Shi; Xiangsheng Xiao; Lan Kang; Wenlin Huang; Xiaojun Wu; Bing Tang; Wuguo Deng

Melanoma is an aggressive cutaneous malignancy, illuminating the exact mechanisms and finding novel therapeutic targets are urgently needed. In this study, we identified KMT2A as a potential target, which promoted the growth of human melanoma cells. KMT2A knockdown significantly inhibited cell viability and cell migration and induced apoptosis, whereas KMT2A overexpression effectively promoted cell proliferation in various melanoma cell lines. Further study showed that KMT2A regulated melanoma cell growth by targeting the hTERT-dependent signal pathway. Knockdown of KMT2A markedly inhibited the promoter activity and expression of hTERT, and hTERT overexpression rescued the viability inhibition caused by KMT2A knockdown. Moreover, KMT2A knockdown suppressed tumorsphere formation and the expression of cancer stem cell markers, which was also reversed by hTERT overexpression. In addition, the results from a xenograft mouse model confirmed that KMT2A promoted melanoma growth via hTERT signaling. Finally, analyses of clinical samples demonstrated that the expression of KMT2A and hTERT were positively correlated in melanoma tumor tissues, and KMT2A high expression predicted poor prognosis in melanoma patients. Collectively, our results indicate that KMT2A promotes melanoma growth by activating the hTERT signaling, suggesting that the KMT2A/hTERT signaling pathway may be a potential therapeutic target for melanoma.


Molecular Oncology | 2016

CREB-binding protein regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathway

Zhipeng Tang; Wendan Yu; Changlin Zhang; Shilei Zhao; Zhenlong Yu; Xiangsheng Xiao; Ranran Tang; Wenjing Yang; Jiaojiao Hao; Tingting Xu; Qianyi Zhang; Wenlin Huang; Wuguo Deng; Wei Guo

CBP (CREB‐binding protein) is a transcriptional co‐activator which possesses HAT (histone acetyltransferases) activity and participates in many biological processes, including embryonic development, growth control and homeostasis. However, its roles and the underlying mechanisms in the regulation of carcinogenesis and tumor development remain largely unknown. Here we investigated the molecular mechanisms and potential targets of CBP involved in tumor growth and survival in lung cancer cells. Elevated expression of CBP was detected in lung cancer cells and tumor tissues compared to the normal lung cells and tissues. Knockdown of CBP by siRNA or inhibition of its HAT activity using specific chemical inhibitor effectively suppressed cell proliferation, migration and colony formation and induced apoptosis in lung cancer cells by inhibiting MAPK and activating cytochrome C/caspase‐dependent signaling pathways. Co‐immunoprecipitation and immunofluorescence analyses revealed the co‐localization and interaction between CBP and CPSF4 (cleavage and polyadenylation specific factor 4) proteins in lung cancer cells. Knockdown of CPSF4 inhibited hTERT transcription and cell growth induced by CBP, and vice versa, demonstrating the synergetic effect of CBP and CPSF4 in the regulation of lung cancer cell growth and survival. Moreover, we found that high expression of both CBP and CPSF4 predicted a poor prognosis in the patients with lung adenocarcinomas. Collectively, our results indicate that CBP regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathways.


Theranostics | 2017

RBFOX3 promotes tumor growth and progression via hTERT signaling and predicts a poor prognosis in hepatocellular carcinoma

Tianze Liu; Wenbin Li; Wenjing Lu; Miao Chen; Meihua Luo; Changlin Zhang; Yixin Li; Ge Qin; Dingbo Shi; Binyi Xiao; Huijuan Qiu; Wendan Yu; Lan Kang; Tiebang Kang; Wenlin Huang; Xinfa Yu; Xiaojun Wu; Wuguo Deng

Activation of the telomere maintenance mechanism is a key hallmark of cancer. Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase, which is highly expressed in more than 80% of tumors, including hepatocellular carcinoma (HCC). However, the exact mechanisms by which hTERT is up-regulated in HCCs and promotes tumor growth and progression is not fully understood. The aim of this study was to discover the novel molecular targets that modulate hTERT signaling and HCC growth. In this study, we pulled down and identified RBFOX3 (RNA binding protein fox-1 homolog 3) as a novel hTERT promoter-binding protein in HCC cells using biotin-streptavidin-agarose pull-down and proteomics approach, and validated it as a regulatory factor for hTERT signaling and tumor growth in HCCs. Knockdown of RBFOX3 suppressed the promoter activity and expression of hTERT and consequently inhibited the growth and progression of HCC cells in vitro and in vivo. The suppression of HCC growth mediated by RBFOX3 knockdown could be rescued by hTERT overexpression. Conversely, exogenous overexpression of RBFOX3 activated the promoter activity and expression of hTERT and promoted the growth and progression of HCC cells. Moreover, we found that RBFOX3 interacted with AP-2β to regulate the expression of hTERT. Furthermore, we demonstrated that RBFOX3 expression was higher in the tumor tissues of HCC patients compared to the corresponding paracancer tissues, and was positively correlated with hTERT expression. Kaplan-Meier analysis showed that the HCC patients with high levels of RBFOX3 and hTERT had poor prognosis. Collectively, our data indicate that RBFOX3 promotes HCC growth and progression and predicts a poor prognosis by activating the hTERT signaling, and suggest that the RBFOX3/hTERT pathway may be a potential therapeutic target for HCC patients.


Cellular Physiology and Biochemistry | 2018

RBFOX3 Regulates the Chemosensitivity of Cancer Cells to 5-Fluorouracil via the PI3K/AKT, EMT and Cytochrome-C/Caspase Pathways

Tianze Liu; Xiaojun Wu; Yizhuo Li; Wenjing Lu; Fufu Zheng; Changlin Zhang; Qian Long; Huijuan Qiu; Yixin Li; Qin Ge; Miao Chen; Xinfa Yu; Wangbing Chen; Hongyang Zhang; Wenlin Huang; Meihua Luo; Wuguo Deng; Liren Li

Background/Aims: RBFOX3, an RNA-binding fox protein, plays an important role in the differentiation of neuronal development, but its role in the chemosensitivity of hepatocellular carcinoma (HCC) to 5-FU is unknown. Methods: In this study, we examined the biological functions of RBFOX3 and its effect on the chemosensitivity of HCC cells to 5-FU in vitro and in a mouse xenograft model. Results: RBFOX3 was found to have elevated expression in HCC cell lines and tissue samples, and its knockdown inhibited HCC cell proliferation. Moreover, knockdown of RBFOX3 improved the inhibitory effect of 5-fluorouracil (5-FU) on cell proliferation, migration and invasion, and enhanced the apoptosis induced by 5-FU. However, overexpression of RBFOX3 reduced the inhibitory effect of 5-fluorouracil (5-FU) on cell proliferation, migration and invasion, and decreased the apoptosis induced by 5-FU. We further elucidated that RBFOX3 knockdown synergized with 5-FU to inhibit the growth and invasion of HCC cells through PI3K/AKT and epithelial-mesenchymal transition (EMT) signaling, and promote apoptosis by activating the cytochrome-c/caspase signaling pathway. Finally, we validated that RBFOX3 regulated 5-FU-mediated cytotoxicity in HCC in mouse xenograft models. Conclusions: The findings from this study indicate that RBFOX3 regulates the chemosensitivity of HCC to 5-FU in vitro and in vivo. Therefore, targeting RBFOX3 may improve the inhibition of HCC growth and progression by 5-FU, and provide a novel potential therapeutic strategy for HCC.


Molecular Cancer | 2017

Downregulation of NMI promotes tumor growth and predicts poor prognosis in human lung adenocarcinomas

Jingshu Wang; Kun Zou; Xu Feng; Miao Chen; Cong Li; Ranran Tang; Meihua Luo; Wangbing Chen; Huijuan Qiu; Ge Qin; Yixin Li; Changlin Zhang; Binyi Xiao; Lan Kang; Tiebang Kang; Wenlin Huang; Xinfa Yu; Xiaojun Wu; Wuguo Deng

BackgroundN-myc (and STAT) interactor (NMI) plays vital roles in tumor growth, progression, and metastasis. In this study, we identified NMI as a potential tumor suppressor in lung cancer and explored its molecular mechanism involved in lung cancer progression.MethodsHuman lung cancer cell lines and a mouse xenograft model was used to study the effect of NMI on tumor growth. The expression of NMI, COX-2 and relevant signaling proteins were examined by Western blot. Tissue microarray immunohistochemical analysis was performed to assess the correlation between NMI and COX-2 expression in lung cancer patients.ResultsNMI was highly expressed in normal lung cells and tissues, but lowly expressed in lung cancer cells and tissues. Overexpression of NMI induced apoptosis, suppressed lung cancer cell growth and migration, which were mediated by up-regulation of the cleaved caspase-3/9 and down-regulation of phosphorylated PI3K/AKT, MMP2/MMP9, β-cadherin, and COX-2/PGE2. In contrast, knockdown of NMI promoted lung cancer cell colony formation and migration, which were correlated with the increased expression of phosphorylated PI3K/AKT, MMP2/MMP9, β-cadherin and COX-2/PGE2. Further study showed that NMI suppressed COX-2 expression through inhibition of the p50/p65 NF-κB acetylation mediated by p300. The xenograft lung cancer mouse models also confirmed the NMI-mediated suppression of tumor growth by inhibiting COX-2 signaling. Moreover, tissue microarray immunohistochemical analysis of lung adenocarcinomas also demonstrated a negative correlation between NMI and COX-2 expression. Kaplan-Meier analysis indicated that the patients with high level of NMI had a significantly better prognosis.ConclusionsOur study showed that NMI suppressed tumor growth by inhibiting PI3K/AKT, MMP2/MMP9, COX-2/PGE2 signaling pathways and p300-mediated NF-κB acetylation, and predicted a favorable prognosis in human lung adenocarcinomas, suggesting that NMI was a potential tumor suppressor in lung cancer.

Collaboration


Dive into the Changlin Zhang's collaboration.

Top Co-Authors

Avatar

Wuguo Deng

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miao Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yixin Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Dingbo Shi

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Wei Guo

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Wendan Yu

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Ge Qin

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Tianze Liu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Jiaojiao Hao

Dalian Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge