Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changlong Yu is active.

Publication


Featured researches published by Changlong Yu.


Matrix Biology | 2009

Effects of transforming growth factor-β1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing

Yu Hou; Zebin Mao; Xuelei Wei; Lin Lin; Lianxu Chen; Hai-Jun Wang; Xin Fu; Jiying Zhang; Changlong Yu

Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor 165 (VEGF(165)) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-beta1 cDNA (Ad-TGF-beta1), human VEGF(165) cDNA (Ad-VEGF(165)), or both (PIRES-TGF-beta1/VEGF(165)) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-beta1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-beta1 and TGF beta 1/VEGF(165) co-expression groups exhibited improved parameters compared with other groups, while the VEGF(165) expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF(165) were diminished by TGF-beta1, while the collagen synthesis effects of TGF-beta1 were unaltered by VEGF(165). Thus treatment with TGF-beta1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.


Calcified Tissue International | 2009

Comparison of Osteogenic Potentials of BMP4 Transduced Stem Cells from Autologous Bone Marrow and Fat Tissue in a Rabbit Model of Calvarial Defects

Lin Lin; Qi Shen; Xuelei Wei; Yu Hou; Tao Xue; Xin Fu; Xiaoning Duan; Changlong Yu

We compared bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) of adult rabbits under identical conditions in terms of their culture characteristics, proliferation capacity, osteogenic differentiation potentials induced by adenovirus-containing bone morphogenetic protein 4 (Ad-BMP4) in vitro, and capacity to repair calvarial defects in the rabbit model by autologous transplantation ex vivo. According to the results of growth curve, cell cycle, and telomerase activity analysis, ADSCs possess a higher proliferation potential. Both of the Ad-BMP4 transduced MSCs expressed BMP4 mRNA and protein and underwent osteogenic differentiation. Up-regulated mRNA expression of all osteogenic genes was observed in differentiated BMSCs and ADSCs, but with different patterns confirmed by real-time RT-PCR. Deposition of calcified extracellular matrix was significantly greater in differentiated ADSCs compared with differentiated BMSCs. X-ray and histological examination indicated significant bone regeneration in the calvarial defects transplanted with Ad-BMP4 transduced autologous MSCs compared to the control groups. There was no significant difference in new bone formation in Ad-BMP4 transduced MSCs based on quantitative digital analysis of histological sections. The use of ADSCs often resulted in the growth of fat tissue structures in the control groups, and the fat tissue structures were not seen with BMSC cells. Our data demonstrate that BMP4 can be potently osteoinductive in vivo, resulting in bone repair. ADSCs may be an attractive alternative to BMSCs for bone tissue engineering under appropriate stimuli. But the easy adipogenic differentiation needs to be considered when choosing adipose tissue for specific clinical application.


Biochemical and Biophysical Research Communications | 2009

The roles of TGF-β1 gene transfer on collagen formation during Achilles tendon healing

Yu Hou; ZeBing Mao; Xuelei Wei; Lin Lin; Lianxu Chen; Hai-Jun Wang; Xin Fu; Jiying Zhang; Changlong Yu

Collagen content and cross-linking are believed to be major determinants of tendon structural integrity and function. The current study aimed to investigate the effects of transforming growth factor (TGF)-beta1 on the collagen content and cross-linking of Achilles tendons, and on the histological and biomechanical changes occurring during Achilles tendon healing in rabbits. Bone marrow-derived mesenchymal stem cells (BMSCs) transfected with the TGF-beta1 gene were surgically implanted into experimentally injured Achilles tendons. Collagen proteins were identified by immunohistochemical staining and fiber bundle accumulation was revealed by Sirius red staining. Achilles tendons treated with TGF-beta1-transfected BMSCs showed higher concentrations of collagen I protein, more rapid matrix remodeling, and larger fiber bundles. Thus TGF-beta1 can promote mechanical strength in healing Achilles tendons by regulating collagen synthesis, cross-link formation, and matrix remodeling.


Acta Pharmacologica Sinica | 2006

Rat adipose-derived stromal cells expressing BMP4 induce ectopic bone formation in vitro and in vivo.

Lin Lin; Xin Fu; Xin Zhang; Lianxu Chen; Jiying Zhang; Changlong Yu; Kangtao Ma; Chunyan Zhou

AbstractAim:Bone morphogenetic protein 4 (BMP4) is one of the main local contributing factors in callus formation in the early phase of fracture healing. Adipose-derived stromal cells (ADSC) are multipotent cells. The present study was conducted to investigate the osteogenic potential of ADSC when exposed to adenovirus containing BMP4 cDNA (Ad-BMP4).Methods:ADSC were harvested from Sprague-Dawley rats. After exposure to Ad-BMP4, ADSC were assessed by alkaline phosphatase activity (ALP) assay, RT-PCR and von Kossa staining. BMP4 expression was assessed by RT-PCR, immunofluorescence and Western blot analysis. ADSC transduced with Ad-BMP4 were directly injected into the hind limb muscles of athymic mice. ADSC Ad-EGFP(enhanced green fluorescence protein) served as controls. All animals were examined by X-ray film and histological analysis.Results:The expression of BMP4 was confirmed at both mRNA and protein levels. The expression of the osteoblastic gene, ALP activity and von Kossa staining confirmed that ADSC transduced with Ad-BMP4 underwent rapid and marked osteoblast differentiation, whereas ADSC transduced with Ad-EGFP and cells left alone displayed no osteogenic differentiation. X-ray and histological examination confirmed new bone formation in athymic mice transplanted with ADSC transduced with Ad-BMP4.Conclusion:Our data demonstrated successful osteogenic differentiation of ADSC transduced with Ad-BMP4 in vitro and in vivo. ADSC maybe an ideal source of mesenchyme lineage stem cells for gene therapy and tissue engineering.


Biochemical and Biophysical Research Communications | 2011

Local administration of TGFβ-1/VEGF165 gene-transduced bone mesenchymal stem cells for Achilles allograft replacement of the anterior cruciate ligament in rabbits.

Xuelei Wei; Zebin Mao; Yu Hou; Lin Lin; Tao Xue; Lianxu Chen; Hai-Jun Wang; Changlong Yu

Graft remodeling following anterior cruciate ligament (ACL) reconstruction requires a long period of recovery before it is capable of withstanding physiological loads. Graft revascularization is extremely important in the remodeling process. In ACL reconstruction, the local administration of vascular endothelial growth factor (VEGF) significantly increased revascularization of the graft, but did not significantly affect the mechanical properties of the graft after implantation (Ju et al., 2006; Yoshikawa, et al., 2006). Our previous studies showed that transforming growth factor-β1 (TGFβ1) could promote improvements in mechanical strength in Achilles tendon regeneration, by regulating collagen type I and type III synthesis, cross-link formation, and matrix-remodeling (Hou et al., 2009). The current study aims to investigate whether the co-expression of TGFβ1/VEGF(165) could beneficially affect the remodeling of ACL grafts. Bone marrow-derived mesenchymal stem cells (BMSCs), transfected with an adenoviral vector encoding TGFβ1, VEGF(165) or TGFβ1/VEGF(165), were surgically implanted into experimental ACL grafts, with non-transfected cells as a control. HE and toluidine blue staining, vascular number, and biomechanical features were analyzed at 3, 6, 12, and 24 weeks after surgery. The results suggest that TGFβ1 expression, in the TGFβ1/VEGF(165)-transfected BMSCs, could accelerate the remodeling of the reconstructed ligament. The cross-talk between TGFβ1 and VEGF(165) has positive consequences, as TGFβ1/VEGF(165)-transfected BMSCs significantly promoted angiogenesis of the reconstructed ligament at 3, 6, 12 weeks, with the best mechanical properties being achieved at 24 weeks. Furthermore, co-expression of these genes is more powerful and efficient than single gene therapy.


Bone | 2010

Heterotopic ossification induced by Achilles tenotomy via endochondral bone formation: expression of bone and cartilage related genes.

Lin Lin; Qi Shen; Tao Xue; Changlong Yu

Animal model for heterotopic ossification (HO) induced by Achilles tenotomy in rats has been used in the literature. However, the molecular mechanism remains unclear. Here, we studied bone and cartilage related genes and their possible roles in this model. Thirty rats underwent bilateral midpoint Achilles tenotomy through a posterior approach under aseptic condition. At 3, 5 and 10 weeks post-operation, X-ray and histological examinations were carried out to investigate the formation of HO. At different phases of HO formation, mRNA levels of transforming growth factor (TGF)-beta1, TGF-beta2, TGF-beta 3, bone morphogenetic proteins (BMP)-2, BMP-4, BMP-7, hypoxia inducible factor (HIF)-1 alpha, Sox9, Runx2, vascular endothelial growth factor (VEGF), aggrecan and collagen type I, II and X were evaluated by real-time RT-PCR. Protein levels of TGF-beta1, TGF-beta2, TGF-beta 3, BMP-2, BMP-4, BMP-7, HIF-1 alpha, Sox9 and Runx2 were also examined by immunohistochemical staining. During the chondrogenic phase, the expressions of HIF-1 alpha and Sox9 were significantly up-regulated. Runx2 expression was significantly up-regulated during osteogenic phase, while HIF-1 alpha and Sox9 expression was significant decreased. TGF-beta1 mRNA levels were rather constant, and the mRNA levels of TGF-beta2, TGF-beta 3 and BMPs were changed throughout HO formation. The presences of the proteins of HIF-1 alpha, Sox9, Runx2, TGF-betas and BMPs within the HO tissues were confirmed by immunohistochemical staining. Our study indicates that HO induced by Achilles tenotomy is by endochondral bone formation, and HIF-1 alpha activation plays an important role during chondrogenesis in this model. Furthermore, the model provides a new experimental system to study endochondral ossification.


Arthritis & Rheumatism | 2008

Articular Cartilage Repair Using Dedifferentiated Articular Chondrocytes and Bone Morphogenetic Protein 4 in a Rabbit Model of Articular Cartilage Defects

Lin Lin; Chunyan Zhou; Xuelei Wei; Yu Hou; Liheng Zhao; Xin Fu; Jiying Zhang; Changlong Yu

OBJECTIVE To observe redifferentiation of dedifferentiated chondrocytes after transplantation into the joint, and to evaluate the ability of dedifferentiated chondrocytes transduced with adenovirus containing bone morphogenetic protein 4 (BMP-4) to redifferentiate in vitro and in vivo in a rabbit model of articular cartilage defects. METHODS Monolayer and pellet culture systems were used to evaluate the redifferentiation of dedifferentiated chondrocytes transduced with BMP-4. A rabbit model of partial-thickness articular cartilage defects was used to evaluate cartilage repair macroscopically and histologically, 6 and 12 weeks after transplantation with first-passage, fifth-passage, or transduced fifth-passage chondrocytes. Histologic grading of the repaired tissue was performed. Expression of BMP-4 and the ability of transplanted cells to recover a chondrocytic phenotype were also assessed. RESULTS BMP-4--expressing dedifferentiated chondrocytes recovered a chondrocytic phenotype in vitro. After transplantation into the joint, some of the dedifferentiated chondrocytes in the defect sites could undergo redifferentiation and formed matrix that displayed positive toluidine blue staining for glycosaminoglycans. Histologic scores of the regenerative tissue revealed significantly better cartilage repair in rabbits transplanted with BMP-4--expressing cells than in the other treatment groups. Staining with toluidine blue revealed expression of BMP-4 in the cells and in the matrix surrounding the cells. CONCLUSION Some dedifferentiated chondrocytes can redifferentiate after transplantation into the load-bearing joint. BMP-4 can be used to induce redifferentiation of dedifferentiated chondrocytes in vitro and in vivo, which could help enhance articular cartilage repair.


Molecular Therapy | 2011

Synergistic Inhibition of Endochondral Bone Formation by Silencing Hif1α and Runx2 in Trauma-induced Heterotopic Ossification

Lin Lin; Qi Shen; Huijie Leng; Xiaoning Duan; Xin Fu; Changlong Yu

Angiogenesis and osteogenesis are tightly coupled during bone development. We studied the effect of inhibition of Hif1α and Runt-related protein 2 (Runx2) on the formation of heterotopic ossification (HO). We constructed lentivirus vectors expressing Hif1α small interfering RNA (siRNA) and Runx2 siRNA. The inhibition of Hif1α function impaired osteoblast proliferation while osteoblasts differentiated normally. Osteoblasts lacking Runx2 proliferated normally while the differentiation was impaired. The osteoblast differentiation was significantly inhibited by co-Runx2 and Hif1α siRNA treatment. The formation of HO by inhibiting Runx2 and Hif1α in an animal model induced by Achilles tenotomy was investigated. The results showed that lacking of Runx2 and Hif1α could inhibit HO formation. Inhibition of Hif1α prevented HO formation only at the initial step and inhibition of Runx2 worked both at the initial step and after chondrogenesis. Angiogenesis and the expressions of osteogenic genes were downregulated in the Hif1α siRNA group. We found synergistic inhibition of endochondral bone formation by silencing Hif1α and Runx2. Our study provided new insight into the roles of Hif1α and Runx2 during the processes of endochondral bone formation, and had important implications for the new therapeutic methods to inhibit HO or to enhance bone formation.


Journal of Orthopaedic Research | 2011

Assessment of the profiling microRNA expression of differentiated and dedifferentiated human adult articular chondrocytes.

Lin Lin; Qi Shen; Chenguang Zhang; Lianxu Chen; Changlong Yu

MicroRNA has an important role in regulating gene expression during cell differentiation. In this study we identified the expression pattern of microRNA in the differentiated and dedifferentiated chondrocytes. Adult human articular chondrocytes were cultured in monolayer. RNA was isolated from the differentiated chondrocytes (collected after isolation) and the fifth‐passage (dedifferentiated) chondrocytes, and subjected to gene expression analysis using microRNA and cDNA microarray analysis. Real‐time RT‐PCR was also performed to confirm the differentially expressed genes. Furthermore, we integrated microRNA and cDNA microarray data together with computational approaches, such as microRNA gene target prediction algorithms, to reveal the role of microRNAs involved in chondrocyte homeostasis. The results showed a dramatic change in expression of microRNA between the two cell types. Thirteen up‐regulated and 12 down‐regulated microRNAs were detected in differentiated chondroctes. We also revealed microRNA–gene target pairs potentially involved in dedifferentiation process. Our results revealed novel findings of differential expression of microRNA in dedifferentiation, and microRNA could have an important role in the maintenance of chondrocytes homeostasis. MicroRNA may be a target for cartilage tissue engineering and regenerative medicine.


PLOS ONE | 2014

Sonic hedgehog improves redifferentiation of dedifferentiated chondrocytes for articular cartilage repair.

Lin Lin; Qi Shen; Tao Xue; Xiaoning Duan; Xin Fu; Changlong Yu

Sonic hedgehog (Shh) is involved in the induction of early cartilaginous differentiation of mesenchymal cells in the limb. We investigated whether Shh could promote redifferentiation of dedifferentiated chondrocytes and have a favorable effect on the regeneration of cartilage. Articular chondrocytes of rats were separated and cultured. The redifferentiation of dedifferentiated chondrocytes transfected with Shh was evaluated using monolayer and pellet culture system. The signaling molecules (Ptc 1, Gli 1 and Sox9) of the hedgehog pathway were investigated. A rat model of articular cartilage defect was used to evaluate cartilage repair after transplantation with dedifferentiated chondrocytes. After Shh gene transfer, the hedgehog pathway was upregulated in dedifferentiated chondrocytes. Real time-PCR and western blot analysis verified the stronger expression of Ptc1, Gli1 and Sox9 in Shh transfected cells. Shh upregulates the Shh signaling pathway and multiple cytokines (bone morphogenetic protein 2 and insulin-like growth factor 1) in dedifferentiated chondrocytes. After transplantation in the joint, histologic analysis of the regenerative tissues revealed that significantly better cartilage repair in rats transplanted with Shh transfected cells. These data suggest that Shh could induce redifferentiation of dedifferentiated chondrocytes through up-regulating Shh signaling pathway, and have considerable therapeutic potential in cartilage repair.

Collaboration


Dive into the Changlong Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge