Changping Yao
Walter Reed Army Institute of Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Changping Yao.
Journal of Cerebral Blood Flow and Metabolism | 2002
Rossana Berti; Anthony J. Williams; John R. Moffett; Sarah L. Hale; Luisa C. Velarde; Peter J. Elliott; Changping Yao; Jitendra R. Dave; Frank C. Tortella
Ischemia-reperfusion brain injury initiates an inflammatory response involving the expression of adhesion molecules and cytokines, some of which are regulated by the nuclear transcription factor NF-κB. In this study the authors examined mRNA expression levels for several important genes associated with inflammation at five time points (3, 6, 12, 24, and 72 hours) after transient middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats. A sensitive and quantitative technique (TaqMan real-time QRT-PCR) was used to simultaneously measure mRNA levels for key cell adhesion molecules and inflammatory cytokines. Gene expression increased significantly in the injured hemisphere for interleukin (IL)-1β (12-fold increase at 24 hours), IL-6 (25-fold increase at 6 hours) and ICAM-1 (4-fold increase at 24 hours), and the in-terhemispheric differences for these genes were significant for every time point examined (P < 0.05 for all values). Tumor necrosis factor-α mRNA was upregulated in the injured versus uninjured hemisphere from 3 to 24 hours (5-fold increase at 6 hours), while E-selectin showed a significant increase in mRNA levels from 6 to 24 hours after MCAO (10-fold increase at 6 hours) (P < 0.05 for all values). VCAM-1 mRNA levels did not respond differentially to injury at any time point between the two brain hemispheres. At all time points examined, activated NF-κB immunoreactivity was observed in cells throughout the infarct-damaged tissue. These results are consistent with the proinflammatory properties of the induced molecules, which are involved in the initiation of the inflammatory cascade, and may thus contribute to secondary cellular responses that lead to further brain damage.
Journal of Neuroscience Research | 2004
X.-C. May Lu; Anthony J. Williams; Changping Yao; Rossana Berti; Jed A. Hartings; Rebecca Whipple; Maryanne Vahey; Ratna G. Polavarapu; Kimberly L. Woller; Frank C. Tortella; Jitendra R. Dave
Temporal changes in gene expression were measured using DNA microarrays after 30‐min or 2‐hr transient middle cerebral artery occlusion (MCAo) in rats. Total RNA was extracted from the injured hemisphere at 30 min, 4 hr, 8 hr, 24 hr, 3 days, and 7 days after MCAo for GeneChip analysis using Affymetrix U34 Rat Neurobiology arrays (1,322 functional genes). In total, 267 genes were expressed differentially: 166 genes were upregulated, 94 genes were downregulated, and 7 genes were biphasically up‐ and downregulated. Among all differentially expressed genes, 88 were newly identified as associated with ischemic brain injury. Most affected genes were distributed among 12 functional categories. Immediate early genes, transcription factors, and heat shock proteins were upregulated as early as 30 min after MCAo, followed by the upregulation of inflammation, apoptosis, cytoskeletal, and metabolism genes, which peaked within 4–24 hr of injury. Neurotrophic growth factors exhibited a sustained upregulation beginning 24 hr after MCAo and persisting through 7 days post‐injury. Three classes of genes were downregulated with distinct temporal patterns: ion channel genes and neurotransmitter receptor genes were downregulated between 8–24 hr after injury, whereas synaptic proteins genes were downregulated between 3–7 days after MCAo. Downregulation of synaptic protein gene expression after ischemic injury is of particular interest because of its conspicuously delayed pattern as a functional group, which has not been reported previously and may play a role in post‐injury recovery.
Neuroscience Letters | 2003
Anthony J. Williams; Rossana Berti; Changping Yao; R.A. Price; L.C. Velarde; I. Koplovitz; S.M. Schultz; Frank C. Tortella; Jitendra R. Dave
Effective treatments to improve survivability following exposure to the nerve agent soman have been established and are currently available. Unfortunately, electrographic brain seizures, neuroinflammation and brain cell death are still a potential problem even with treatment. In the present study we have characterized the time course of the central neuro-inflammatory gene response using quantitative real time-PCR (TaqMan). Male Sprague-Dawley rats were pre-treated with HI-6 (1-2-hydroxy-iminomethyl-1-pyridino-3-(4-carbamoyl-1-pyridino-2-oxapropane dichloride); 125 mg/kg, i.p.) and exposed 30 min later to 1.6 x LD(50) of soman (pinacolyl methyl-phosphonofluoridate, 180 microg/kg, s.c.) followed at 1 min by atropine methyl nitrate (4 mg/kg, i.m.). Initially, a significant and dramatic upregulation of tumor necrosis factor-alpha and vascular cell adhesion molecule-1 mRNA levels was measured 2 h post-exposure followed at 6 h by upregulation of interleukin-1beta, interleukin-6, E-selectin, and intercellular adhesion molecule-1 with eventual resolution by 24-48 h. In conclusion, an acute and transient upregulation of the inflammatory gene response is activated following soman exposure that may be involved in the soman-induced brain injury process.
Journal of Neuroinflammation | 2009
Hans Wei; Xi-Chun M. Lu; Deborah A. Shear; Anu Waghray; Changping Yao; Frank C. Tortella; Jitendra R. Dave
BackgroundInflammatory cytokines play a crucial role in the pathophysiology of traumatic brain injury (TBI), exerting either deleterious effects on the progression of tissue damage or beneficial roles during recovery and repair. NNZ-2566, a synthetic analogue of the neuroprotective tripeptide Glypromate®, has been shown to be neuroprotective in animal models of brain injury. The goal of this study was to determine the effects of NNZ-2566 on inflammatory cytokine expression and neuroinflammation induced by penetrating ballistic-like brain injury (PBBI) in rats.MethodsNNZ-2566 or vehicle (saline) was administered intravenously as a bolus injection (10 mg/kg) at 30 min post-injury, immediately followed by a continuous infusion of NNZ-2566 (3 mg/kg/h), or equal volume of vehicle, for various durations. Inflammatory cytokine gene expression from the brain tissue of rats exposed to PBBI was evaluated using microarray, quantitative real time PCR (QRT-PCR), and enzyme-linked immunosorbent assay (ELISA) array. Histopathology of the injured brains was examined using hematoxylin and eosin (H&E) and immunocytochemistry of inflammatory cytokine IL-1β.ResultsNNZ-2566 treatment significantly reduced injury-mediated up-regulation of IL-1β, TNF-α, E-selectin and IL-6 mRNA during the acute injury phase. ELISA cytokine array showed that NZ-2566 treatment significantly reduced levels of the pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ in the injured brain, but did not affect anti-inflammatory cytokine IL-6 levels.ConclusionCollectively, these results suggest that the neuroprotective effects of NNZ-2566 may, in part, be functionally attributed to the compounds ability to modulate expression of multiple neuroinflammatory mediators in the injured brain.
Neuroscience Letters | 2007
Ren-Wu Chen; Anthony J. Williams; Zhilin Liao; Changping Yao; Frank C. Tortella; Jitendra R. Dave
Cellular injury can involve the aberrant stimulation of cell cycle proteins in part through activation of phosphodiesterases (PDEs) and downstream expression of cell-cycle components such as cyclin D1. In mature non-proliferating cells activation of the cell cycle can lead to the induction of programmed cell death. In the present study, we investigated the in vitro neuroprotective efficacy and mechanism of action of vinpocetine (PDE1 inhibitor), trequinsin (PDE3 inhibitor), and rolipram (PDE4 inhibitor) in four mechanistically-distinct models of injury to primary rat cortical neurons as related to cell cycle regulation and apoptosis. Cellular injury was induced by hypoxia/hypoglycemia, veratridine (10 microM), staurosporine (1 microM), or glutamate (100 microM), resulting in average neuronal cell death rates of 43-48% as determined by MTT assay. Treatment with each PDE inhibitor (PDEI) resulted in a similar concentration-dependent neuroprotection profile with maximal effective concentrations of 5-10 microM (55-77% neuroprotection) in all four neurotoxicity models. Direct cytotoxicity due to PDE inhibition alone was not observed at concentrations below 100 microM. Further studies indicated that PDEIs can suppress the excitotoxic upregulation of cyclin D1 similar to the effects of flavopiridol, a cyclin-dependent kinase inhibitor, including suppression of pro-apoptotic caspase-3 activity. Overall, these data indicate that PDEIs are broad-spectrum neuroprotective agents acting through modulation of cell cycle elements and may offer a novel mode of therapy against acute injury to the brain.
Neurotoxicity Research | 2003
Rossana Berti; Anthony J. Williams; L.C. Velarde; John R. Moffett; P. J. Elliott; J. Adams; Changping Yao; Jitendra R. Dave; Frank C. Tortella
Anti-inflammatory treatment with the proteasome inhibitor MLN519 has been previously reported to be neuroprotective against ischemic brain injury in rats. These effects have been related to inhibition of the transcription factor NF-κB, which is activated through ubiquitin-proteasomal degradation. The aim of this study was to evaluate the effects of MLN519 to alter the expression of several inflammatory genes under the control of NF-κB. Male Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAo) followed by vehicle or MLN519 (1.0 mg/kg, i.v.) treatment immediately after reperfusion of blood to the brain at 2h. Gene expression was evaluated 3–72 h post-MCAo. The most striking effects of intravenous treatment with MLN519 were associated with reductions in ICAM-1 expression at 3 h followed by reductions in E-selectin (12–72 h). Less dramatic reductions were observed in IL-1β (3–24h) and TNF-α (24 h) with no apparent effects on IL-6 and VCAM-1 mRNA levels. Immunohistochemical analysis revealed that the genes most dramatically affected by MLN519 had highest expression in endothelial cells and leukocytes (E-selectin, ICAM-1), indicating that these cell types may be the primary targets of intravenously delivered MLN519 treatment.
Journal of Neurotrauma | 2009
Xi-Chun May Lu; Ren-Wu Chen; Changping Yao; Hans Wei; Xiaofang Yang; Zhilin Liao; Jitendra R. Dave; Frank C. Tortella
Glycine-proline-glutamate (GPE) is an N-terminal tripeptide endogenously cleaved from insulin-like growth factor-1 in the brain and is neuroprotective against hypoxic-ischemic brain injury and neurodegeneration. NNZ-2566 is an analog of GPE designed to have improved bioavailability. In this study, we tested NNZ-2566 in a rat model of penetrating ballistic-type brain injury (PBBI) and assessed its effects on injury-induced histopathology, behavioral deficits, and molecular and cellular events associated with inflammation and apoptosis. In the initial dose-response experiments, NNZ-2566 (0.01-3 mg/kg/h x 12 h intravenous infusion) was given at 30 min post-injury and the therapeutic time window was established by delaying treatments 2-4 h post-injury, but with the addition of a 10- or 30-mg/kg bolus dose. All animals survived 72 h. Neuroprotection was evaluated by balance beam testing and histopathology. The effects of NNZ-2566 on injury-induced changes in Bax and Bcl-2 proteins, activated microgliosis, neutrophil infiltration, and astrocyte reactivity were also examined. Behavioral results demonstrated that NNZ-2566 dose-dependently reduced foot faults by 19-66% after acute treatments, and 35-55% after delayed treatments. Although gross lesion volume was not affected, NNZ-2566 treatment significantly attenuated neutrophil infiltration and reduced the number of activated microglial cells in the peri-lesion regions of the PBBI. PBBI induced a significant upregulation in Bax expression (36%) and a concomitant downregulation in Bcl-2 expression (33%), both of which were significantly reversed by NNZ-2566. Collectively, these results demonstrated that NNZ-2566 treatment promoted functional recovery following PBBI, an effect related to the modulation of injury-induced neural inflammatory and apoptotic mechanisms.
Journal of Neurotrauma | 2011
Deborah A. Shear; Xi-Chun M. Lu; Rebecca Pedersen; Guo Wei; Zhiyong Chen; Angela R. Davis; Changping Yao; Jitendra R. Dave; Frank C. Tortella
This study evaluated the injury severity profile of unilateral, frontal penetrating ballistic-like brain injury (PBBI) on neurofunctional outcome, blood-brain barrier (BBB) permeability, and brain edema formation. The degree of injury severity was determined by the delivery of a water-pressure pulse designed to produce a temporary cavity by rapid (<40 ms) expansion of the probes elastic balloon calibrated to equal 5%, 10%, 12.5%, or 15% of total rat brain volume (control groups consisted of sham surgery or insertion of the probe only). Neurofunctional assessments revealed motor and cognitive deficits related to the degree of injury severity, with the most clear-cut profile of PBBI injury severity depicted by the Morris water maze (MWM) results. A biphasic pattern of BBB leakage was detected in the injured hemisphere at all injury severity levels at 4 h post-injury, and again at 48-72 h post-injury, which remained evident out to 7 days post-PBBI in the 10% and 12.5% PBBI groups. Likewise, significant brain edema was detected in the injured hemisphere by 4 h post-injury and remained elevated out to 7 days post-injury in the 10% and 12.5% PBBI groups. However, following 5% PBBI, significant levels of edema were only detected from 24 h to 48h post-injury. These results identify an injury severity profile of BBB permeability, brain edema, and neurofunctional impairment that provides sensitive and clinically relevant outcome metrics for studying potential therapeutics.
Journal of Neurotrauma | 2010
Andrew K. Ottens; Liliana Bustamante; Erin C. Golden; Changping Yao; Ronald L. Hayes; Kang Kandy Wang; Frank C. Tortella; Jitendra R. Dave
Diagnosis and treatment of stroke and traumatic brain injury remain significant health care challenges to society. Patient care stands to benefit from an improved understanding of the interactive biochemistry underlying neurotrauma pathobiology. In this study, we assessed the power of neuroproteomics to contrast biochemical responses following ischemic and traumatic brain injuries in the rat. A middle cerebral artery occlusion (MCAO) model was employed in groups of 30-min and 2-h focal neocortical ischemia with reperfusion. Neuroproteomes were assessed via tandem cation-anion exchange chromatography-gel electrophoresis, followed by reversed-phase liquid chromatography-tandem mass spectrometry. MCAO results were compared with those from a previous study of focal contusional brain injury employing the same methodology to characterize homologous neocortical tissues at 2 days post-injury. The 30-min MCAO neuroproteome depicted abridged energy production involving pentose phosphate, modulated synaptic function and plasticity, and increased chaperone activity and cell survival factors. The 2-h MCAO data indicated near complete loss of ATP production, synaptic dysfunction with degraded cytoarchitecture, more conservative chaperone activity, and additional cell survival factors than those seen in the 30-min MCAO model. The TBI group exhibited disrupted metabolism, but with retained malate shuttle functionality. Synaptic dysfunction and cytoarchitectural degradation resembled the 2-h MCAO group; however, chaperone and cell survival factors were more depressed following TBI. These results underscore the utility of neuroproteomics for characterizing interactive biochemistry for profiling and contrasting the molecular aspects underlying the pathobiological differences between types of brain injuries.
Journal of Neurotrauma | 2013
J. Susie Zoltewicz; Stefania Mondello; Boxuan Yang; Kimberly J. Newsom; Firas Kobeissy; Changping Yao; Xi-Chun May Lu; Jitendra R. Dave; Deborah A. Shear; Kara Schmid; Virginia Rivera; Terri Cram; Jixiang Seaney; Zhiqun Zhang; Kevin K. W. Wang; Ronald L. Hayes; Frank C. Tortella
The goal of this project was to determine whether biochemical markers of brain damage can be used to diagnose and assess the severity of injury in a rat model of penetrating ballistic-like brain injury (PBBI). To determine the relationship between injury magnitude and biomarker levels, rats underwent three discrete PBBI severity levels defined by the magnitude of the ballistic component of the injury, calibrated to equal 5%, 10%, or 12.5% of total rat brain volume. Cortex, cerebrospinal fluid (CSF), and blood were collected at multiple time points. Levels of three biomarkers (αII-spectrin breakdown product [SBDP150], glial fibrillary acidic protein [GFAP], and ubiquitin C-terminal hydrolase-L1 [UCH-L1]), were measured using quantitative immunoblotting and/or enzyme-linked immunosorbent assays. In injured cortex, SBDP150 and GFAP levels were increased significantly over controls. Cortical SBDP150 was elevated at 1 day but not 7 days, and GFAP at 7 days but not 1 day. At their respective time points, mean levels of SBDP150 and GFAP biomarkers in the cortex rose stepwise as injury magnitude increased. In the CSF, increasing severity of PBBI was associated with increasing concentrations of both neuronal and glial biomarkers acutely at 1 day after injury, but no trends were observed at 7 days. In plasma, SBDP150 was elevated at 5 min after 10% PBBI and at 6 h after 12.5% PBBI. UCH-L1 levels in plasma were elevated acutely at 5 min post-injury reflecting injury severity and rapidly decreased within 2 h. Overall, our results support the conclusion that biomarkers are effective indicators of brain damage after PBBI and may also aid in the assessment of injury magnitude.