Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changwook Min is active.

Publication


Featured researches published by Changwook Min.


Nature Communications | 2015

Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma.

Huilin Shao; Jaehoon Chung; Kyungheon Lee; Leonora Balaj; Changwook Min; Bob S. Carter; Fred H. Hochberg; Xandra O. Breakefield; Hakho Lee; Ralph Weissleder

Real-time monitoring of drug efficacy in glioblastoma multiforme (GBM) is a major clinical problem as serial re-biopsy of primary tumours is often not a clinical option. MGMT (O6-methylguanine DNA methyltransferase) and APNG (alkylpurine-DNA-N-glycosylase) are key enzymes capable of repairing temozolomide-induced DNA damages and their levels in tissue are inversely related to treatment efficacy. Yet, serial clinical analysis remains difficult, and, when done, primarily relies on promoter methylation studies of tumour biopsy material at the time of initial surgery. Here we present a microfluidic chip to analyse mRNA levels of MGMT and APNG in enriched tumour exosomes obtained from blood. We show that exosomal mRNA levels of these enzymes correlate well with levels found in parental cells and that levels change considerably during treatment of seven patients. We propose that if validated on a larger cohort of patients, the method may be used to predict drug response in GBM patients.


Theranostics | 2012

Magnetic Nanoparticles and microNMR for Diagnostic Applications

Huilin Shao; Changwook Min; David Issadore; Monty Liong; Tae-Jong Yoon; Ralph Weissleder; Hakho Lee

Sensitive and quantitative measurements of clinically relevant protein biomarkers, pathogens and cells in biological samples would be invaluable for disease diagnosis, monitoring of malignancy, and for evaluating therapy efficacy. Biosensing strategies using magnetic nanoparticles (MNPs) have recently received considerable attention, since they offer unique advantages over traditional detection methods. Specifically, because biological samples have negligible magnetic background, MNPs can be used to obtain highly sensitive measurements in minimally processed samples. This review focuses on the use of MNPs for in vitro detection of cellular biomarkers based on nuclear magnetic resonance (NMR) effects. This detection platform, termed diagnostic magnetic resonance (DMR), exploits MNPs as proximity sensors to modulate the spin-spin relaxation time of water molecules surrounding the molecularly-targeted nanoparticles. With new developments such as more effective MNP biosensors, advanced conjugational strategies, and highly sensitive miniaturized NMR systems, the DMR detection capabilities have been considerably improved. These developments have also enabled parallel and rapid measurements from small sample volumes and on a wide range of targets, including whole cells, proteins, DNA/mRNA, metabolites, drugs, viruses and bacteria. The DMR platform thus makes a robust and easy-to-use sensor system with broad applications in biomedicine, as well as clinical utility in point-of-care settings.


Nature Communications | 2013

Magnetic barcode assay for genetic detection of pathogens

Monty Liong; Anh Hoang; Jaehoon Chung; Nil Gural; Christopher B. Ford; Changwook Min; Rupal R. Shah; Rushdy Ahmad; Marta Fernandez-Suarez; Sarah M. Fortune; Mehmet Toner; Hakho Lee; Ralph Weissleder

The task of rapidly identifying patients infected with Mycobacterium tuberculosis in resource-constrained environments remains a challenge. A sensitive and robust platform that does not require bacterial isolation or culture is critical in making informed diagnostic and therapeutic decisions. Here we introduce a platform for the detection of nucleic acids based on a magnetic barcoding strategy. PCR-amplified mycobacterial genes are sequence-specifically captured on microspheres, labelled by magnetic nanoprobes and detected by nuclear magnetic resonance. All components are integrated into a single, small fluidic cartridge for streamlined on-chip operation. We use this platform to detect M. tuberculosis and identify drug-resistance strains from mechanically processed sputum samples within 2.5 h. The specificity of the assay is confirmed by detecting a panel of clinically relevant non-M. tuberculosis bacteria, and the clinical utility is demonstrated by the measurements in M. tuberculosis-positive patient specimens. Combined with portable systems, the magnetic barcode assay holds promise to become a sensitive, high-throughput and low-cost platform for point-of-care diagnostics.


Lab on a Chip | 2011

Miniature magnetic resonance system for point-of-care diagnostics.

David Issadore; Changwook Min; Monty Liong; Jaehoon Chung; Ralph Weissleder; Hakho Lee

We have developed a next generation, miniaturized platform to diagnose disease at the point-of-care using diagnostic magnetic resonance (DMR-3). Utilizing a rapidly growing library of functionalized magnetic nanoparticles, DMR has previously been demonstrated as a versatile tool to quantitatively and rapidly detect disease biomarkers in unprocessed biological samples. A major hurdle for bringing DMR to the point-of-care has been its sensitivity to temperature variation. As an alternative to costly and bulky mechanisms to control temperature, we have implemented an automated feedback system to track and compensate for the temperature drift, which enables reliable and robust DMR measurements in realistic clinical environments (4-50 °C). Furthermore, the new system interfaces with a mobile device to facilitate system control and data sharing over wireless networks. With such features, the DMR-3 platform can function as a self-contained laboratory even in resource-limited, remote settings. The clinical potential of the new system is demonstrated by detecting trace amounts of proteins and as few as 10 bacteria (Staphylococcus aureus) in a short time frame (<30 min).


ACS Nano | 2011

Ubiquitous Detection of Gram-Positive Bacteria with Bioorthogonal Magnetofluorescent Nanoparticles

Hyun Chung; Thomas Reiner; Ghyslain Budin; Changwook Min; Monty Liong; David Issadore; Hakho Lee; Ralph Weissleder

The ability to rapidly diagnose gram-positive pathogenic bacteria would have far reaching biomedical and technological applications. Here we describe the bioorthogonal modification of small molecule antibiotics (vancomycin and daptomycin), which bind to the cell wall of gram-positive bacteria. The bound antibiotics conjugates can be reacted orthogonally with tetrazine-modified nanoparticles, via an almost instantaneous cycloaddition, which subsequently renders the bacteria detectable by optical or magnetic sensing. We show that this approach is specific, selective, fast and biocompatible. Furthermore, it can be adapted to the detection of intracellular pathogens. Importantly, this strategy enables detection of entire classes of bacteria, a feat that is difficult to achieve using current antibody approaches. Compared to covalent nanoparticle conjugates, our bioorthogonal method demonstrated 1-2 orders of magnitude greater sensitivity. This bioorthogonal labeling method could ultimately be applied to a variety of other small molecules with specificity for infectious pathogens, enabling their detection and diagnosis.


ACS Nano | 2012

Mechanism of Magnetic Relaxation Switching Sensing

Changwook Min; Huilin Shao; Monty Liong; Tae-Jong Yoon; Ralph Weissleder; Hakho Lee

Magnetic relaxation switching (MRSw) assays that employ target-induced aggregation (or disaggregation) of magnetic nanoparticles (MNPs) can be used to detect a wide range of biomolecules. The precise working mechanisms, however, remain poorly understood, often leading to confounding interpretation. We herein present a systematic and comprehensive characterization of MRSw sensing. By using different types of MNPs with varying physical properties, we analyzed the nature and transverse relaxation modes for MRSw detection. The study found that clustered MNPs are universally in a diffusion-limited fractal state (dimension of ~2.4). Importantly, a new model for transverse relaxation was constructed that accurately recapitulates observed MRSw phenomena and predicts the MRSw detection sensitivities and dynamic ranges.


Lab on a Chip | 2014

Magnetic sensing technology for molecular analyses

D. Issadore; Yong Il Park; Huilin Shao; Changwook Min; Kyungheon Lee; Monty Liong; Ralph Weissleder; Hakho Lee

Magnetic biosensors, based on nanomaterials and miniature electronics, have emerged as a powerful diagnostic platform. Benefiting from the inherently negligible magnetic background of biological objects, magnetic detection is highly selective even in complex biological media. The sensing thus requires minimal sample purification and yet achieves a high signal-to-background contrast. Moreover, magnetic sensors are also well-suited for miniaturization to match the size of biological targets, which enables sensitive detection of rare cells and small amounts of molecular markers. We herein summarize recent advances in magnetic sensing technologies, with an emphasis on clinical applications in point-of-care settings. Key components of sensors, including magnetic nanomaterials, labeling strategies and magnetometry, are reviewed.


Bioconjugate Chemistry | 2011

Specific pathogen detection using bioorthogonal chemistry and diagnostic magnetic resonance.

Monty Liong; Marta Fernandez-Suarez; David Issadore; Changwook Min; Carlos Tassa; Thomas Reiner; Sarah M. Fortune; Mehmet Toner; Hakho Lee; Ralph Weissleder

The development of faster and more sensitive detection methods capable of identifying specific bacterial species and strains has remained a longstanding clinical challenge. Thus to date, the diagnosis of bacterial infections continues to rely on the performance of time-consuming microbiological cultures. Here, we demonstrate the use of bioorthogonal chemistry for magnetically labeling specific pathogens to enable their subsequent detection by nuclear magnetic resonance. Antibodies against a bacterial target of interest were first modified with trans-cyclooctene and then coupled to tetrazine-modified magnetic nanoprobes, directly on the bacteria. This labeling method was verified by surface plasmon resonance as well as by highly specific detection of Staphylococcus aureus using a miniaturized diagnostic magnetic resonance system. Compared to other copper-free bioorthogonal chemistries, the cycloaddition reaction reported here displayed faster kinetics and yielded higher labeling efficiency. Considering the short assay times and the portability of the necessary instrumentation, it is feasible that this approach could be adapted for clinical use in resource-limited settings.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone

Hyungsoon Im; Cesar M. Castro; Huilin Shao; Monty Liong; Jun S. Song; Divya Pathania; Lioubov Fexon; Changwook Min; Maria Avila-Wallace; Omar Zurkiya; Junsung Rho; Brady Magaoay; Rosemary H. Tambouret; Misha Pivovarov; Ralph Weissleder; Hakho Lee

Significance Smartphones and wearable electronics have advanced tremendously over the last several years but fall short of allowing their use for molecular diagnostics. We herein report a generic approach to enable molecular diagnostics on smartphones. The method utilizes molecular-specific microbeads to generate unique diffraction patterns of “blurry beads” which can be recorded and deconvoluted by digital processing. We applied the system to resolve individual precancerous and cancerous cells as well as to detect cancer-associated DNA targets. Because the system is compact, easy to operate, and readily integrated with the standard, portable smartphone, this approach could enable medical diagnostics in geographically and/or socioeconomically limited settings with pathology bottlenecks. The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables molecular and cellular diagnostics. The D3 (digital diffraction diagnosis) system uses microbeads to generate unique diffraction patterns which can be acquired by smartphones and processed by a remote server. We applied the D3 platform to screen for precancerous or cancerous cells in cervical specimens and to detect human papillomavirus (HPV) DNA. The D3 assay generated readouts within 45 min and showed excellent agreement with gold-standard pathology or HPV testing, respectively. This approach could have favorable global health applications where medical access is limited or when pathology bottlenecks challenge prompt diagnostic readouts.


ACS Nano | 2011

Nanoparticle Mediated Measurement of Target-Drug Binding in Cancer Cells

Adeeti V. Ullal; Thomas Reiner; Katherine S. Yang; Rostic Gorbatov; Changwook Min; David Issadore; Hakho Lee; Ralph Weissleder

Responses to molecularly targeted therapies can be highly variable and depend on mutations, fluctuations in target protein levels in individual cells, and drug delivery. The ability to rapidly quantitate drug response in cells harvested from patients in a point-of-care setting would have far reaching implications. Capitalizing on recent developments with miniaturized NMR technologies, we have developed a magnetic nanoparticle-based approach to directly measure both target expression and drug binding in scant human cells. The method involves covalent conjugation of the small-molecule drug to a magnetic nanoparticle that is then used as a read-out for target expression and drug-binding affinity. Using poly(ADP-ribose) polymerase (PARP) inhibition as a model system, we developed an approach to distinguish differential expression of PARP in scant cells with excellent correlation to gold standards, the ability to mimic drug pharmacodynamics ex vivo through competitive target-drug binding, and the potential to perform such measurements in clinical samples.

Collaboration


Dive into the Changwook Min's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Issadore

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Reiner

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Adeeti V. Ullal

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge