Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changyu He is active.

Publication


Featured researches published by Changyu He.


Acta Biomaterialia | 2015

Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery.

Qinglai Yang; Lianjiang Tan; Changyu He; Bingya Liu; Yuhong Xu; Zhenggang Zhu; Zhifeng Shao; Bing Gong; Yu-Mei Shen

Redox-responsive micelles self-assembled from dynamic covalent block copolymers with double disulfide linkage in the backbone have been developed successfully. The amphiphilic block copolymers PEG-PLA associated with complementary H-bonding sequences can self-assemble into spherical micelles in aqueous media with sizes from 34 nm to 107 nm with different molar mass of PEG and PLA. Moreover, in vitro drug release analyses indicate that reductive environment can result in triggered drug release profiles. The glutathione (GSH) mediated intracellular drug delivery was investigated against HeLa human cervical carcinoma cell line. Flow cytometry and fluorescence microscopy measurements demonstrated that the micelles exhibited faster drug release in glutathione monoester (GSH-OEt) pretreated HeLa cells than that in the nonpretreated cells. Cytotoxicity assay of DOX-loaded micelles indicated the higher cellular proliferation inhibition against 10 mM of GSH-OEt pretreated HeLa cells than that of the nonpretreated ones. These reduction-responsive, biodegradable and biocompatibility micelles could provide a favorable platform to construct excellent drug delivery systems for cancer therapy.


Cell Death and Disease | 2017

Long noncoding RNA UCA1 induced by SP1 promotes cell proliferation via recruiting EZH2 and activating AKT pathway in gastric cancer

Zhenqiang Wang; Qiang Cai; Lei Hu; Changyu He; Jianfang Li; Zhi-Wei Quan; Bingya Liu; Chen Li; Zhenggang Zhu

Long noncoding RNA UCA1 has emerged as a novel regulator in cancer initiation and progression of various cancers. However, function and underlying mechanism of UCA1 in the progression of gastric cancer (GC) remain unclear. In the present study, we report that UCA1 expressed highly in GC tissues and GC cells, which was partly induced by SP1. UCA1 promoted GC cell proliferation and G1/S transition in vitro and in vivo. Moreover, UCA1 exerted its function through interacting with EZH2, promoting direct interaction with cyclin D1 promoter to activate the translation of cyclin D1. Furthermore, AKT/GSK-3B/cyclin D1 axis was activated to upregulate cyclin D1 due to overexpression of UCA1. In addition, EZH2 and phosphorylated AKT induced by UCA1 could impact each other to form a positive feedback to promote cyclin D1 expression. This study demonstrated that UCA1 as a critical regulator involved in GC proliferation and cell cycle progression by promoting cyclin D1 expression, which indicates that it may be clinically a potential therapeutic target in GC.


Polymer Chemistry | 2015

Chitosan oligosaccharide copolymer micelles with double disulphide linkage in the backbone associated by H-bonding duplexes for targeted intracellular drug delivery

Qinglai Yang; Changyu He; Yuhong Xu; Bingya Liu; Zhifeng Shao; Zhenggang Zhu; Yongtai Hou; Bing Gong; Yu-Mei Shen

A folic acid (FA) conjugated chitosan oligosaccharide (CSO) polylactic acid (PLA) copolymer FA-CSO-PLA with double disulphide linkage in the backbone directed by H-bonding association duplex was synthesized, and its self-assembled micelles were evaluated as smart targeted drug delivery carriers. Both of the intermediates and the terminal copolymers were characterized by 1H-NMR and gel permeation chromatography (GPC). The critical micelle concentration (CMC) value is 0.045 mg mL−1 which suggests the micelles are highly stable in dilute solution. TEM and DLS further confirmed the successful formation of micelles with an average size of 61 and 100 nm, PDI of 0.209 and 0.230 for blank and DOX loaded micelles, respectively. The micelles were destructed under a reductive environment, leading to encapsulated drug release. Moreover, fluorescence microscopy demonstrated that the micelles exhibited both a passive and active targeting ability in HeLA cells due to an EPR effect and folate-mediated endocytosis. These results suggested the micelles would provide a favourable platform for constructing excellent drug delivery systems for cancer therapy.


Polymer Chemistry | 2016

Synthesis and micellization of redox-responsive dynamic covalent multi-block copolymers

Wei Hu; Changyu He; Lianjiang Tan; Bingya Liu; Zhenggang Zhu; Bing Gong; Yu-Mei Shen; Zhifeng Shao

Multi-block copolymers, which are composed of two or more covalent interconnected polymeric segments of different types, offer unparalleled opportunities for designing new nanostructured materials with enhanced functionality and properties. Using double disulfide linkages coupling with complementary double H-bonding sequences, we demonstrated a new synthetic approach to multi-block copolymers that produces alternating architectures. It offers a new synthetic strategy for synthesizing multi-block copolymers which not only applies to PLA and PEG blocks for multi-block copolymers, but also to other kinds of polymers especially for those hard to be linked by a traditional method. In this study, we synthesized an amphiphilic multi-block copolymer [PLA-PEG]t containing redox-responsive disulfide linkages. Their structures were confirmed by 1H NMR and GPC. These amphiphilic multi-block copolymers can self-assemble into spherical micelles in aqueous media. Compared with di-block copolymers reported in our previous work, multi-block copolymer micelles have a higher drug loading content (DLC), higher stability and more compact spherical structure, whilst maintaining excellent redox-responsive properties and are able to release drugs triggered by intracellular GSH. Fluorescence microscopy measurements and MTT assay demonstrated that the micelle exhibited faster drug release and higher cellular proliferation inhibition due to intracellular GSH responsiveness. These results suggested that the micelles would provide a favorable platform to construct drug delivery systems for cancer therapy.


Cancer Letters | 2017

Long noncoding RNA UCA1 promotes tumour metastasis by inducing GRK2 degradation in gastric cancer

Zhenqiang Wang; Changyu He; Lei Hu; Hongpeng Shi; Jianfang Li; Qinlong Gu; Liping Su; Bingya Liu; Chen Li; Zhenggang Zhu

Increasing evidence demonstrates that long noncoding RNAs (lncRNAs) regulate gene and protein expression by exerting an influence on transcriptional and post-transcriptional processes. Here, we report that the lncRNA UCA1 increases the metastatic ability of gastric cancer (GC) cells by regulating GRK2 protein stability by promoting Cbl-c-mediated GRK2 ubiquitination and degradation. This process then activates the ERK-MMP9 signalling pathway. Furthermore, we demonstrate that GRK2 is downregulated in GC cells and that silencing of GRK2 might cause similar phenotypic changes and signalling pathway activation as those induced by elevated UCA1 in GC cells. Our results suggest that UCA1 might function as a mediator of protein ubiquitination and may be a promising molecular target for GC therapy.


Oncotarget | 2015

HOXB9 induction of mesenchymal-to-epithelial transition in gastric carcinoma is negatively regulated by its hexapeptide motif

Qing Chang; Li Zhang; Changyu He; Baogui Zhang; Jun Zhang; Bingya Liu; Naiyan Zeng; Zhenggang Zhu

HOXB9, a transcription factor, plays an important role in development. While HOXB9 has been implicated in tumorigenesis and metastasis, its mechanisms are variable and its role in gastric carcinoma (GC) remains unclear. In the present study, we demonstrated that the expression of HOXB9 decreased in gastric carcinoma and was associated with malignancy and metastasis. Re-expression of HOXB9 in gastric cell lines resulted in the suppression of cell proliferation, migration, and invasion, which was accompanied by the induction of mesenchymal-to-epithelial transition (MET). Comparative sequence analysis and examination of a HOXB9 structural model indicated that three sites might possibly be involved in MET regulation. The in vitro study of HOXB9 mutants showed that these were unable to inhibit MET induction. However, when overexpressing a HOXB9 mutant lacking the hexapeptide motif, a more potent MET induction and tumor suppression was observed compared to that of the wild-type, indicating that the presence of the hexapeptide motif reduced HOXB9 MET induction and tumor suppression activity. Therefore, the results of the present study suggested that HOXB9 is a tumor suppressor in gastric carcinoma, and its activity was controlled by different regulatory mechanisms such as the hexapeptide motif as a “brake” in this case. The results of these regulatory effects could lead to either oncogenic or tumor suppressive roles of HOXB9, depending on the context of the particular type of cancer involved.


Polymer Chemistry | 2016

Reductive triblock copolymer micelles with a dynamic covalent linkage deliver antimiR-21 for gastric cancer therapy

Changyu He; Zhen Zhang; Qinglai Yang; Qing Chang; Zhifeng Shao; Bing Gong; Yu-Mei Shen; Bingya Liu; Zhenggang Zhu

A reductive tri-block copolymer PEG-SS-PLA-SS-PEI with a double disulphide linkage in the backbone directed by H-bonding association was synthesized and self-assembled into cationic polymeric nanomicellar particles for in vivo antimiRNA delivery with an average diameter of 68 nm and a zeta potential of approximately 39 mV. The chemical structure of the copolymer was well characterized by 1H NMR and GPC. The cationic polymeric nanomicellar particles could be unpacked in an intracellular reductive environment (GSH) leading to the release of encapsulated antimiRNA. MTT assays in vitro showed no significant cytotoxicity of SGC7901 gastric cancer cells incubated with PEG-SS-PLA-SS-PEI micelles. The in vitro study indicated that the micelle-based antimiR-21 delivery system could effectively facilitate cellular uptake and greatly down-regulate the expression level of miR-21 in SGC7901 cell lines, which was comparable to Lipofectamine™ 2000. The down regulation of miR-21 remarkably induced apoptosis, suppressed the tumor cell migration and invasion, and increased the expression of target genes such as phosphatase and tensin homolog deleted on chromosome ten (PTEN) and Programmed Cell Death Protein 4 (PDCD4). More importantly, the in vivo systemic administration of the micelles/antimiR-21 complex in a gastric cancer model significantly inhibited tumor growth and increased the expression of target genes. The nanoparticle based on the PEG-SS-PLA-SS-PEI copolymer would be a safe and efficient carrier for delivery of therapeutic antimiRNA, which shows a prospective therapy method in gastric cancer.


Oncotarget | 2017

A hydrophobic residue in the TALE homeodomain of PBX1 promotes epithelial-to-mesenchymal transition of gastric carcinoma

Changyu He; Zhenqiang Wang; Li Zhang; Liyun Yang; Jianfang Li; Xuehua Chen; Jun Zhang; Qing Chang; Yingyan Yu; Bingya Liu; Zhenggang Zhu

Pre-B-cell leukemia homeobox 1 (PBX1) was originally identified as a proto-oncogene in human leukemia. Although this protein has been shown to contribute to cellular development and tumorigenesis, the role of PBX1 in gastric carcinoma (GC) remains unclear. In this study, we observed increased expression of PBX1 in GC tissues compared with adjacent normal tissues. This increase in PBX1 expression levels negatively correlated with HOXB9 mRNA expression and was also associated with malignancy and metastasis. PBX1 promoted proliferation and metastasis of GC cells both in vitro and in vivo. These phenomena were also accompanied by epithelial-to-mesenchymal transition (EMT). Additionally, we observed that PBX1 promotes the expression of tumor growth and angiogenic factors. A structural model of the PBX1-HOX complex revealed that hydrophobic binding between PBX1 and the hexapeptide motif might be required for EMT induction. This analysis also demonstrated that the Phe252 residue in the first helix of the TALE homeodomain is involved in the latter hydrophobic binding reaction. In vitro data from PBX1 mutants suggest that PBX1 cannot promote tumorigenesis of GC cells via EMT induction when Phe252 residues lose hydrophobicity. It is likely that the presence of this residue is essential in facilitating hydrophobic binding with the hexapeptide motif. These findings suggest that PBX1 may be a potential target for GC treatment and this study provides a platform to elucidate the molecular mechanisms that underpin the role of PBX1 in GC tumorigenesis.


Materials Science and Engineering: C | 2017

Dynamic covalent linked triblock copolymer micelles for glutathione-mediated intracellular drug delivery

Xueli Wang; Changyu He; Qinglai Yang; Lianjiang Tan; Bingya Liu; Zhenggang Zhu; Bing Gong; Yu-Mei Shen

Redox-responsive linkages dispersed in the backbones of the synthetic polymers, while young in the current spectrum of the biomedical application, are rapidly extending into their niche. In the present work, triblock copolymer PEG-PLA-PEG synthesized and characterized by 1H -NMR and SEC can self-assemble into redox-responsive micelles in aqueous media with nanosized 33nm and 47nm. And the copolymers PEG2000-PLA3000-PEG2000 and PEG2000-PLA5000-PEG2000 present lower CMC with 0.034 and 0.022mg/mL, and higher DLC of 4.28% and 5.14% respectively, compared with that of diblock copolymer. Moreover, drug release from the micelles can be triggered and significantly accelerated in reductive environment. The low cytotoxicity of redox-responsive micelles was confirmed by MTT assay against NIH 3T3 cells. All of these results demonstrated that these polymeric micelles self-assembled from double-disulfide tethered block copolymers are promising carriers for the redox-responsive intracellular delivery of hydrophobic anticancer drugs.


Oncotarget | 2016

Aurora kinase A revives dormant laryngeal squamous cell carcinoma cells via FAK/PI3K/Akt pathway activation

Liyun Yang; Changyu He; Xuehua Chen; Liping Su; Bingya Liu; Hao Zhang

Revival of dormant tumor cells may be an important tumor metastasis mechanism. We hypothesized that aurora kinase A (AURKA), a cell cycle control kinase, promotes the transition of laryngeal squamous cell carcinoma (LSCC) cells from G0 phase to active division. We therefore investigated whether AURKA could revive dormant tumor cells to promote metastasis. Western blotting revealed that AURKA expression was persistently low in dormant laryngeal cancer Hep2 (D-Hep2) cells and high in non-dormant (T-Hep2) cells. Decreasing AURKA expression in T-Hep2 cells induced dormancy and reduced FAK/PI3K/Akt pathway activity. Increasing AURKA expression in D-Hep2 cells increased FAK/PI3K/Akt pathway activity and enhanced cellular proliferation, migration, invasion and metastasis. In addition, FAK/PI3K/Akt pathway inhibition caused dormancy-like behavior and reduced cellular mobility, migration and invasion. We conclude that AURKA may revive dormant tumor cells via FAK/PI3K/Akt pathway activation, thereby promoting migration and invasion in laryngeal cancer. AURKA/FAK/PI3K/Akt inhibitors may thus represent potential targets for clinical LSCC treatment.

Collaboration


Dive into the Changyu He's collaboration.

Top Co-Authors

Avatar

Bingya Liu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zhenggang Zhu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yu-Mei Shen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Bing Gong

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Lianjiang Tan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Qinglai Yang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zhifeng Shao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jianfang Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Qing Chang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xuehua Chen

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge