Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changyuan Lu is active.

Publication


Featured researches published by Changyuan Lu.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Evidence for a ferryl intermediate in a heme-based dioxygenase

Ariel Lewis-Ballester; Dipanwita Batabyal; Tsuyoshi Egawa; Changyuan Lu; Yu Lin; Marcelo A. Martí; Luciana Capece; Darío A. Estrin; Syun Ru Yeh

In contrast to the wide spectrum of cytochrome P450 monooxygenases, there are only 2 heme-based dioxygenases in humans: tryptophan dioxygenase (hTDO) and indoleamine 2,3-dioxygenase (hIDO). hTDO and hIDO catalyze the same oxidative ring cleavage reaction of L-tryptophan to N-formyl kynurenine, the initial and rate-limiting step of the kynurenine pathway. Despite immense interest, the mechanism by which the 2 enzymes execute the dioxygenase reaction remains elusive. Here, we report experimental evidence for a key ferryl intermediate of hIDO that supports a mechanism in which the 2 atoms of dioxygen are inserted into the substrate via a consecutive 2-step reaction. This finding introduces a paradigm shift in our understanding of the heme-based dioxygenase chemistry, which was previously believed to proceed via simultaneous incorporation of both atoms of dioxygen into the substrate. The ferryl intermediate is not observable during the hTDO reaction, highlighting the structural differences between the 2 dioxygenases, as well as the importance of stereoelectronic factors in modulating the reactions.


Journal of the American Chemical Society | 2009

Inhibitory substrate binding site of human indoleamine 2,3-dioxygenase.

Changyuan Lu; Yu Lin; Syun Ru Yeh

Human indoleamine 2,3-dioxygenase (hIDO) is an intracellular heme-containing enzyme, which catalyzes the initial and rate-determining step of L-tryptophan (L-Trp) metabolism via the kynurenine pathway. Due to its immunosuppressive function, hIDO has been recognized as an important drug target for cancer. Here we report evidence supporting the presence of an inhibitory substrate binding site (S(i)) in hIDO that is capable of binding molecules with a wide variety of structures, including substrates (L-Trp and 1-methyl-L-tryptophan), an effector (3-indole ethanol), and an uncompetitive inhibitor (Mitomycin C). The data offer useful guidelines for future development of more potent hIDO inhibitors; they also call for the re-evaluation of the action mechanism of Mitomycin C (MtoC), a widely used antitumor chemotherapeutic agent.


Journal of Biological Chemistry | 2007

Structural and Functional Properties of a Truncated Hemoglobin from a Food-borne Pathogen Campylobacter jejuni

Changyuan Lu; Tsuyoshi Egawa; Laura M. Wainwright; Robert K. Poole; Syun Ru Yeh

Campylobacter jejuni contains two hemoglobins, Cgb and Ctb. Cgb has been suggested to perform an NO detoxification reaction to protect the bacterium against NO attack. On the other hand, the physiological function of Ctb, a class III truncated hemoglobin, remains unclear. By using CO as a structural probe, resonance Raman data show that the distal heme pocket of Ctb exhibits a positive electrostatic potential. In addition, two ligand-related vibrational modes, νFe-O2 and νO-O, were identified in the oxy derivative, with frequencies at 542 and 1132 cm-1, respectively, suggesting the presence of an intertwined H-bonding network surrounding the heme-bound ligand, which accounts for its unusually high oxygen affinity (222 μm-1). Mutagenesis studies of various distal mutants suggest that the heme-bound dioxygen is stabilized by H-bonds donated from the Tyr(B10) and Trp(G8) residues, which are highly conserved in the class III truncated hemoglobins; furthermore, an additional H-bond donated from the His(E7) to the Tyr(B10) further regulates these H-bonding interactions by restricting the conformational freedom of the phenolic side chain of the Tyr(B10). Taken together, the data suggest that it is the intricate balance of the H-bonding interactions that determines the unique ligand binding properties of Ctb. The extremely high oxygen affinity of Ctb makes it unlikely to function as an oxygen transporter; on the other hand, the distal heme environment of Ctb is surprisingly similar to that of cytochrome c peroxidase, suggesting a role of Ctb in performing a peroxidase or P450-type of oxygen chemistry.


Journal of Biological Chemistry | 2009

Ligand Migration in the Truncated Hemoglobin-II from Mycobacterium tuberculosis : THE ROLE OF G8 TRYPTOPHAN

Victor Guallar; Changyuan Lu; Kenneth Borrelli; Tsuyoshi Egawa; Syun Ru Yeh

Resonance Raman studies show that the heme-bound CO in trHbO, a truncated-II hemoglobin from Mycobacterium tuberculosis, is exposed to an environment with a positive electrostatic potential. The mutation of Trp(G8), an absolutely conserved residue in group II and III truncated hemoglobins, to Phe introduces two new Fe–CO conformers, both of which exhibit reduced electrostatic potentials. Computer simulations reveal that the structural perturbation is a result of the increased flexibility of the Tyr(CD1) and Leu(E11) side chains due to the reduction of the size of the G8 residue. Laser flash photolysis studies show that the G8 mutation induces 1) the presence of two new geminate recombination phases, one with a rate faster than the time resolution of our instrument and the other with a rate 13-fold slower than that of the wild type protein, and 2) the reduction of the total geminate recombination yield from 86 to 62% and the increase in the bimolecular recombination rate by a factor of 530. Computer simulations uncover that the photodissociated ligand migrates between three distal temporary docking sites before it subsequently rebinds to the heme iron or ultimately escapes into the solvent via a hydrophobic tunnel. The calculated energy profiles associated with the ligand migration processes are in good agreement with the experimental observations. The results highlight the importance of the Trp(G8) in regulating ligand migration in trHbO, underscoring its pivotal role in the structural and functional properties of the group II and III truncated hemoglobins.


Journal of the American Chemical Society | 2008

Coherence Spectroscopy Investigations of the Low-Frequency Vibrations of Heme: Effects of Protein-Specific Perturbations

Flaviu Gruia; Minoru Kubo; Xiong Ye; Dan Ionascu; Changyuan Lu; Robert K. Poole; Syun Ru Yeh; Paul M. Champion

Femtosecond coherence spectroscopy is used to probe the low-frequency (20-200 cm(-1)) vibrational modes of heme proteins in solution. Horseradish peroxidase (HRP), myoglobin (Mb), and Campylobacter jejuni globin (Cgb) are compared and significant differences in the coherence spectra are revealed. It is concluded that hydrogen bonding and ligand charge do not strongly affect the low-frequency coherence spectra and that protein-specific deformations of the heme group lower its symmetry and control the relative spectral intensities. Such deformations potentially provide a means for proteins to tune heme reaction coordinates, so that they can perform a broad array of specific functions. Native HRP displays complex spectral behavior above approximately 50 cm(-1) and very weak activity below approximately 50 cm(-1). Binding of the substrate analog, benzhydroxamic acid, leads to distinct changes in the coherence and Raman spectra of HRP that are consistent with the stabilization of a heme water ligand. The CN derivatives of the three proteins are studied to make comparisons under conditions of uniform heme coordination and spin-state. MbCN is dominated by a doming mode near 40 cm(-1), while HRPCN displays a strong oscillation at higher frequency (96 cm(-1)) that can be correlated with the saddling distortion observed in the X-ray structure. In contrast, CgbCN displays low-frequency coherence spectra that contain strong modes near 30 and 80 cm(-1), probably associated with a combination of heme doming and ruffling. HRPNO displays a strong doming mode near 40 cm(-1) that is activated by photolysis. The damping of the coherent motions is significantly reduced when the heme is shielded from solvent fluctuations by the protein material and reduced still further when T approximately < 50 K, as pure dephasing processes due to the protein-solvent phonon bath are frozen out.


Biochemistry | 2010

Spectroscopic Studies of Ligand and Substrate Binding to Human Indoleamine 2,3-Dioxygenase

Changyuan Lu; Yu Lin; Syun Ru Yeh

Human indoleamine 2,3-dioxygenase (hIDO) is an intracellular heme-containing enzyme, which catalyzes the initial and rate-determining step of l-tryptophan (l-Trp) metabolism via the kynurenine pathway in nonhepatic tissues. Steady-state kinetic data showed that hIDO exhibits substrate inhibition behavior, implying the existence of a second substrate binding site in the enzyme, although so far there is no direct evidence supporting it. The kinetic data also revealed that the K(m) of l-Trp (15 microM) is approximately 27-fold lower than the K(d) of l-Trp (0.4 mM) for the ligand-free ferrous enzyme, suggesting that O(2) binding proceeds l-Trp binding during the catalytic cycle. With cyanide as a structural probe, we have investigated the thermodynamic and kinetic parameters associated with ligand and substrate binding to hIDO. Equilibrium titration studies show that the cyanide adduct is capable of binding two l-Trp molecules, with K(d) values of 18 microM and 26 mM. The data offer the first direct evidence of the second substrate binding site in hIDO. Kinetic studies demonstrate that prebinding of l-Trp to the enzyme retards cyanide binding by approximately 13-fold, while prebinding of cyanide to the enzyme facilitates l-Trp binding by approximately 22-fold. The data support the view that during the active turnover of the enzyme it is kinetically more favored to bind O(2) prior to l-Trp.


Journal of Biological Chemistry | 2007

Structural and Functional Properties of a Single Domain Hemoglobin from the Food-borne Pathogen Campylobactor jejuni

Changyuan Lu; Masahiro Mukai; Yu Lin; Guanghui Wu; Robert K. Poole; Syun Ru Yeh

Campylobacter jejuni contains two globins, a truncated hemoglobin, Ctb, and a single domain hemoglobin, Cgb. The physiological function of Ctb remains unclear, whereas Cgb has been linked to NO detoxification. With resonance Raman scattering, the iron-histidine stretching mode of Cgb was identified at 251 cm-1. This frequency is unusually high, suggesting an imidazolate character of the proximal histidine as a result of the H-bonding network linking the catalytic triad involving the F8His, H23Glu, and G5Tyr residues. In the CO-complex, two conformers were identified with the νC-O/νFe-CO at 529/1914 cm-1 and 492/1963 cm-1. The former is assigned to a “closed” conformation, in which the heme-bound CO is stabilized by the H-bond(s) donated from the B10Tyr-E7Gln residues, whereas the latter is assigned to an “open” conformer, in which the H-bonding interaction is absent. The presence of the two alternative conformations demonstrates the plasticity of the protein matrix. In the O2-complex, the iron-O2 stretching frequency was identified at 554 cm-1, which is unusually low, indicating that the heme-bound O2 is stabilized by strong H-bond(s) donated by the B10Tyr-E7Gln residues. This scenario is consistent with its low O2 off-rate (0.87 s-1). Taken together the data suggest that the NO-detoxifying activity of Cgb is facilitated by the imidazolate character of the proximal F8His and the distal positive polar environment provided by the B10Tyr-E7Gln. They may offer electronic “push” and “pull,” respectively, for the O-O bond cleavage reaction required for the isomerization of the presumed peroxynitrite intermediate to the product, nitrate.


Journal of Biological Chemistry | 2010

The Single-domain Globin from the Pathogenic Bacterium Campylobacter jejuni: NOVEL D-HELIX CONFORMATION, PROXIMAL HYDROGEN BONDING THAT INFLUENCES LIGAND BINDING, AND PEROXIDASE-LIKE REDOX PROPERTIES*

Mark Shepherd; Vladimir V. Barynin; Changyuan Lu; Paul V. Bernhardt; Guanghui Wu; Syun Ru Yeh; Tsuyoshi Egawa; Svetlana E. Sedelnikova; David W. Rice; Jayne Louise Wilson; Robert K. Poole

The food-borne pathogen Campylobacter jejuni possesses a single-domain globin (Cgb) whose role in detoxifying nitric oxide has been unequivocally demonstrated through genetic and molecular approaches. The x-ray structure of cyanide-bound Cgb has been solved to a resolution of 1.35 Å. The overall fold is a classic three-on-three α-helical globin fold, similar to that of myoglobin and Vgb from Vitreoscilla stercoraria. However, the D region (defined according to the standard globin fold nomenclature) of Cgb adopts a highly ordered α-helical conformation unlike any previously characterized members of this globin family, and the GlnE7 residue has an unexpected role in modulating the interaction between the ligand and the TyrB10 residue. The proximal hydrogen bonding network in Cgb demonstrates that the heme cofactor is ligated by an imidazolate, a characteristic of peroxidase-like proteins. Mutation of either proximal hydrogen-bonding residue (GluH23 or TyrG5) results in the loss of the high frequency νFe-His stretching mode (251 cm−1), indicating that both residues are important for maintaining the anionic character of the proximal histidine ligand. Cyanide binding kinetics for these proximal mutants demonstrate for the first time that proximal hydrogen bonding in globins can modulate ligand binding kinetics at the distal site. A low redox midpoint for the ferrous/ferric couple (−134 mV versus normal hydrogen electrode at pH 7) is consistent with the peroxidase-like character of the Cgb active site. These data provide a new insight into the mechanism via which Campylobacter may survive host-derived nitrosative stress.


Methods in Enzymology | 2008

Hemoglobins from Mycobacterium tuberculosis and Campylobacter jejuni: a comparative study with resonance Raman spectroscopy.

Changyuan Lu; Tsuyoshi Egawa; Masahiro Mukai; Robert K. Poole; Syun Ru Yeh

Three groups of hemoglobins (Hbs) have been identified in unicellular organisms: (1) the truncated Hbs (trHb) that display a novel two-over-two alpha-helical structure, (2) the flavohemoglobins (FHb) that comprise a Hb domain with a classical three-over-three alpha-helical structure and a covalently attached flavin-containing reductase domain, and (3) the single-domain Hbs (sdHb) that exhibit high sequence homology and structural similarity to the Hb domain of FHb. On the basis of phylogenetic analysis, the trHbs can be further divided into three subgroups: TrHb-I, TrHb-II, and TrHb-III. The various classes of Hbs may coexist in the same organism, suggesting distinct functions for each class of Hb. This chapter reviews the structural and functional properties of a TrHb-I (trHbN) and a TrHb-II (trHbO) from Mycobacterium tuberculosis, as well as a TrHb-III (trCtb) and a sdHb (Cgb) from Campylobacter jejuni on the basis of resonance Raman spectroscopic studies.


Journal of Biological Chemistry | 2011

Ferryl Derivatives of Human Indoleamine 2,3-Dioxygenase

Changyuan Lu; Syun Ru Yeh

The critical role of the ferryl intermediate in catalyzing the oxygen chemistry of monooxygenases, oxidases, or peroxidases has been known for decades. In contrast, its involvement in heme-based dioxygenases, such as human indoleamine 2,3-dioxygenase (hIDO), was not recognized until recently. In this study, H2O2 was used as a surrogate to generate the ferryl intermediate of hIDO. Spectroscopic data demonstrate that the ferryl species is capable of oxidizing azinobis(3-ethylbenzothiazoline-6-sulfonic acid) but not l-Trp. Kinetic studies reveal that the conversion of the ferric enzyme to the ferryl intermediate facilitates the l-Trp binding rate by >400-fold; conversely, l-Trp binding to the enzyme retards the peroxide reaction rate by ∼9-fold, because of the significant elevation of the entropic barrier. The unfavorable entropic factor for the peroxide reaction highlights the scenario that the structure of hIDO is not optimized for utilizing H2O2 as a co-substrate for oxidizing l-Trp. Titration studies show that the ferryl intermediate possesses two substrate-binding sites with a Kd of 0.3 and 440 μm and that the electronic properties of the ferryl moiety are sensitive to the occupancy of the two substrate-binding sites. The implications of the data are discussed in the context of the structural and functional relationships of the enzyme.

Collaboration


Dive into the Changyuan Lu's collaboration.

Top Co-Authors

Avatar

Syun Ru Yeh

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tsuyoshi Egawa

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darío A. Estrin

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Marcelo A. Martí

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariel Lewis-Ballester

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Denis L. Rousseau

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge