Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changyue Xue is active.

Publication


Featured researches published by Changyue Xue.


Cell Proliferation | 2017

The JAK/STAT3 signalling pathway regulated angiogenesis in an endothelial cell/adipose-derived stromal cell co-culture, 3D gel model

Changyue Xue; Jiamin Xie; Dan Zhao; Shiyu Lin; Tengfei Zhou; Sirong Shi; Xiaoru Shao; Yunfeng Lin; Bofeng Zhu; Xiaoxiao Cai

The aim of the study was to investigate the role of the JAK/STAT3 signalling pathway in angiogenesis.


Journal of Cellular Physiology | 2017

Notch Signaling Pathway Regulates Angiogenesis via Endothelial Cell in 3D Co‐Culture Model

Dan Zhao; Changyue Xue; Shiyu Lin; Sirong Shi; Qianshun Li; Mengting Liu; Xiaoxiao Cai; Yunfeng Lin

This study aimed to investigate the role of Notch signaling pathway for angiogenesis in a three‐dimensional (3D) collagen gel model with co‐culture of adipose‐derived stromal cells (ASCs) and endothelial cells (ECs). A 3D collagen gel model was established in vitro by implanting both ASCs from green fluorescent protein‐labeled mouse and ECs from red fluorescent protein‐labeled mouse, and the phenomena of angiogenesis with Notch signaling inducer Jagged1, inhibitor DAPT and PBS, respectively were observed by confocal laser scanning microscopy. Semi‐quantitative PCR and immunofluorescent staining were conducted to detect expressions of angiogenesis‐related genes and proteins. Angiogenesis in the co‐culture gels was promoted by Jagged1 treatment while attenuated by DAPT treatment, compared to control group. In co‐culture system of ASCs and ECs, the gene expressions of VEGFA, VEGFB, Notch1, Notch2, Hes1, Hey1, VEGFR1,and the protein expression of VEGFA, VEGFB, Notch1, Hes1, Hey1 were increased by Jagged1 treatment and decreased by DAPT treatment in ECs. And the result of VEGFR3 was the opposite. However, the same results did not appear completely in ASCs. These results revealed the VEGFA/B‐Notch1/2‐Hes1/Hey1‐ VEGFR1/3 signal axis played an important role in angiogenesis when ASCs and ECs were co‐cultured in a 3D collagen gel model. J. Cell. Physiol. 232: 1548–1558, 2017.


Cell Proliferation | 2017

Effect of matrix stiffness on osteoblast functionalization

Tao Zhang; Shiyu Lin; Xiaoru Shao; Qi Zhang; Changyue Xue; Shu Zhang; Yunfeng Lin; Bofeng Zhu; Xiaoxiao Cai

Stiffness of bone tissue differs response to its physiological or pathological status, such as osteoporosis or osteosclerosis. Consequently, the function of cells residing in bone tissue including osteoblasts (OBs), osteoclasts and osteocytes will be affected. However, to the best of our knowledge, the detailed mechanism of how extracellular matrix stiffness affects OB function remains unclear.


Cell Proliferation | 2017

Curved microstructures promote osteogenesis of mesenchymal stem cells via the RhoA/ROCK pathway.

Qi Zhang; Shiyu Lin; Tao Zhang; Taoran Tian; Quanquan Ma; Xueping Xie; Changyue Xue; Yunfeng Lin; Bofeng Zhu; Xiaoxiao Cai

Cells in the osteon reside in a curved space, accordingly, the curvature of the microenvironment is an important geometric feature in bone formation. However, it is not clear how curved microstructures affect cellular behaviour in bone tissue.


Journal of Cellular Physiology | 2018

Regulating Osteogenesis and Adipogenesis in Adipose-Derived Stem Cells by Controlling Underlying Substrate Stiffness†

Tao Zhang; Shiyu Lin; Xiaoru Shao; Sirong Shi; Qi Zhang; Changyue Xue; Yunfeng Lin; Bofeng Zhu; Xiaoxiao Cai

Cells reside in a complex microenvironment (niche) in which the biochemical and biophysical properties of the extracellular matrix profoundly affect cell behavior. Extracellular stiffness, one important bio‐mechanical characteristic of the cell niche, is important in regulating cell proliferation, migration, and lineage specification. However, the mechanism by which mechanical signals guide osteogenic and adipogenic commitment of stem cells remains difficult to dissect. To explore this question, we generated a range of polydimethylsiloxane‐based matrices with differing degrees of stiffness that mimicked the stiffness seen in natural tissues and examined adipose stem cell morphology, spreading, vinculin expression, and differentiation along the osteogenic and adipogenic pathways. Rigid matrices allowed broader cell spreading, faster growth rate and stronger expression of vinculin in adipose‐derived stem cells. In the presence of inductive culture media, stiffness‐dependent osteogenesis and adipogenesis of the adipose stem cells indicated that there was a combinatorial effect of biophysical and biochemical cues; no such lineage specification was observed in normal media. Osteogenic differentiation behavior showed a correlation with matrix rigidity, as well as with elevated expression of RhoA, ROCK‐1/‐2, and related proteins in the Wnt/β‐catenin pathway. The result provides a comprehensive understanding of how stem cells respond to the surrounding microenvironment and points to the fact that matrix stiffness is a critical element in biomaterial design and this will be an important advance in stem cell‐based tissue engineering.


Biochimica et Biophysica Acta | 2017

Substrate stiffness regulates arterial-venous differentiation of endothelial progenitor cells via the Ras/Mek pathway.

Changyue Xue; Tao Zhang; Xueping Xie; Qi Zhang; Shu Zhang; Bofeng Zhu; Yunfeng Lin; Xiaoxiao Cai

Cells sense and respond to the biophysical properties of their surrounding environment by interacting with the extracellular matrix (ECM). Therefore, the optimization of these cell-matrix interactions is critical in tissue engineering. The vascular system is adapted to specific functions in diverse tissues and organs. Appropriate arterial-venous differentiation is vital for the establishment of functional vasculature in angiogenesis. Here, we have developed a polydimethylsiloxane (PDMS)-based substrate capable of simulating the physiologically relevant stiffness of both venous (7kPa) and arterial (128kPa) tissues. This substrate was utilized to investigate the effects of changes in substrate stiffness on the differentiation of endothelial progenitor cells (EPCs). As EPCs derived from mouse bone marrow were cultured on substrates of increasing stiffness, the mRNA and protein levels of the specific arterial endothelial cell marker ephrinB2 were found to increase, while the expression of the venous marker EphB4 decreased. Further experiments were performed to identify the mechanotransduction pathway involved in this process. The results indicated that substrate stiffness regulates the arterial and venous differentiation of EPCs via the Ras/Mek pathway. This work shows that modification of substrate stiffness may represent a method for regulating arterial-venous differentiation for the fulfilment of diverse functions of the vasculature.


Journal of Cellular Physiology | 2018

Substrate stiffness regulated migration and angiogenesis potential of A549 cells and HUVECs

Dan Zhao; Changyue Xue; Qianshun Li; Mengting Liu; Wenjuan Ma; Tengfei Zhou; Yunfeng Lin

Tumor tissue tends to stiffen during solid tumor progression. Substrate stiffness is known to alter cell behaviors, such as proliferation and migration, during which angiogenesis is requisite. Mono‐ and co‐culture systems of lung cancer cell line A549 and human umbilical vein endothelial cells (HUVECs), on polydimethylsiloxane substrates (PDMS) with varying stiffness, were used for investigating the effects of substrate stiffness on the migration and angiogenesis of lung cancer. The expressions of matrix metalloproteinases (MMPs) and angiogenesis‐related growth factors were up‐regulated with the increase of substrate stiffness, whereas that of tissue inhibitor of matrix metalloproteinase (TIMPs) were down‐regulated with increasing substrate stiffness. Our data not only suggested that stiff substrate may promote the migration and angiogenesis capacities of lung cancer, but also suggested that therapeutically targeting lung tumor stiffness or response of ECs to lung tumor stiffness may help reduce migration and angiogenesis of lung tumor.


Cell Proliferation | 2017

IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway

Shiyu Lin; Qi Zhang; Xiaoru Shao; Tao Zhang; Changyue Xue; Sirong Shi; Dan Zhao; Yunfeng Lin

The aim of this study was to investigate the role of insulin‐like growth factor‐1 (IGF‐1) and crosstalk between endothelial cells (ECs) and adipose‐derived stem cells (ASCs) in the process of angiogenesis.


ACS Applied Materials & Interfaces | 2017

Electrospun Poly (3-Hydroxybutyrate-Co-4-Hydroxybutyrate)/Graphene Oxide Scaffold: Enhanced Properties and Promoted in Vivo Bone Repair in Rats

Tengfei Zhou; Guo Li; Shiyu Lin; Taoran Tian; Quanquan Ma; Qi Zhang; Sirong Shi; Changyue Xue; Wenjuan Ma; Xiaoxiao Cai; Yunfeng Lin

Bone tissue engineering emerges as an advantageous technique to achieve tissue regeneration. Its scaffolds must present excellent biomechanical properties, where bare polymers poorly perform. Development of new biomaterials with high osteogenic capacity is urgently pursued. In this study, an electrospun poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/graphene oxide (P34HB/GO) nanofibrous scaffold is successfully fabricated and characterized. The effects of GO amount on scaffold morphology, biomechanical properties, and cellular behaviors are investigated. GO reduces the fiber diameter and enhances porosity, hydrophilicity, mechanical properties, cellular performance, and osteogenic differentiation of scaffolds. P34HB/GO triumphs over P34HB in in vivo bone regeneration in critical-sized calvarial defect of rats. We believe that this study is the first to evaluate the capability of in vivo bone repair of electrospun P34HB/GO scaffold. With facile fabrication process, favorable porous structures, enhanced biomechanical properties, and fast osteogenic capability, P34HB/GO scaffold holds practical potentials for bone tissue engineering application.


Cell Proliferation | 2018

Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the WNT signalling pathway

Nanxin Liu; Mi Zhou; Qi Zhang; Tao Zhang; Taoran Tian; Quanquan Ma; Changyue Xue; Shiyu Lin; Xiaoxiao Cai

Researches showed that stiffness of the extracellular matrix can affect the differentiation of many stem cells. Dental pulp stem cells (DPSCs) are a promising type of adult stem cell. However, we know little about whether and how the behaviour of DPSCs is influenced by stiffness.

Collaboration


Dive into the Changyue Xue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bofeng Zhu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge