Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chanida Palanuvej is active.

Publication


Featured researches published by Chanida Palanuvej.


Journal of advanced pharmaceutical technology & research | 2017

Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

Aunyachulee Ganogpichayagrai; Chanida Palanuvej; Nijsiri Ruangrungsi

Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitrophenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC 50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC 50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC 50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro.


Journal of advanced pharmaceutical technology & research | 2016

Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves

Yamon Pitakpawasutthi; Worathat Thitikornpong; Chanida Palanuvej; Nijsiri Ruangrungsi

Chromolaena odorata (L.) R. M. King and H. Rob. is a Thai medicinal plant used for the treatment of wounds, rashes, diabetes, and insect repellent. The leaves of C. odorata were collected from 10 different sources throughout Thailand. The chemical constituents of essential oils were hydro-distilled from the leaves and were analyzed by gas chromatography-mass spectrometry. Chlorogenic acid contents were determined by thin-layer chromatography (TLC) - densitometry with winCATS software and TLC image analysis with ImageJ software. The TLC plate was developed in the mobile phase that consisted of ethyl acetate:water:formic acid (17:3:2). Antioxidant activities were examined by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging and β-carotene bleaching assays. C. odorata essential oil has shown the major components of pregeijerene, dauca-5, 8-diene, (E)-caryophyllene, β-pinene, and α-pinene. The chlorogenic acid content of C. odorata leaves was determined by TLC-densitometry and TLC image analysis. Results have shown that TLC-densitometry and TLC image analysis method were not statistically significantly different. DPPH radical scavenging and β-carotene bleaching assays of ethanolic extract of C. odorata leaves showed its antioxidant potential.


Journal of advanced pharmaceutical technology & research | 2015

In vitro anti-inflammatory, mutagenic and antimutagenic activities of ethanolic extract of Clerodendrum paniculatum root

Pravaree Phuneerub; Wacharee Limpanasithikul; Chanida Palanuvej; Nijsiri Ruangrungsi

Clerodendrum paniculatum L. (Family Verbenaceae) has been used as an antipyretic and anti-inflammatory drug in traditional Thai medicine. This present study investigated the in vitro anti-inflammatory, mutagenic and antimutagenic activities of the ethanolic extract of C. paniculatum (CPE) dried root collected from Sa Kaeo Province of Thailand. Murine macrophage J774A.1 cells were stimulated by lipopolysaccharide (LPS) to evaluate nitric oxide (NO), tumor necrosis factor-α (TNF-α) and prostaglandin E 2 (PGE 2 ) production in the anti-inflammatory test while the mutagenic and antimutagenic potential was performed by the Ames test. The outcome of this study displayed that the CPE root significantly inhibited LPS-induced NO, TNF-α, and PGE 2 production in macrophage cell line. In addition, the CPE root was not mutagenic toward Salmonella typhimurium strain TA98 and TA100 with and without nitrite treatment. Moreover, it inhibited the mutagenicity of nitrite treated 1-aminopyrene on both strains. The findings suggested the anti-inflammatory and antimutagenic potentials of CPE root.


Pharmacognosy Research | 2017

Pharmacognostic specification, chlorogenic acid content, and In vitro antioxidant activities of Lonicera japonica flowering bud

Chayanon Chaowuttikul; Chanida Palanuvej; Nijsiri Ruangrungsi

Background: Lonicera japonica Thunb. or Japanese Honeysuckle has been widely used in traditional medicine for antipyretic. Objective: To establish the pharmacognostic specification of L. japonica flowering bud in Thailand and to determine its chlorogenic acid content and in vitro antioxidant activities. Materials and Methods: Dried L. japonica flowering bud from 15 various herbal drugstores throughout Thailand were investigated for pharmacognostic specification. Their chlorogenic acid contents were quantitatively analyzed by thin layer chromatography (TLC) densitometry with winCATS software. The mobile phase for TLC development consisted of ethyl acetate: formic acid: acetic acid: water (10:1.1:1.1:2.6). Antioxidant activities were investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric ion reducing antioxidant power assay, nitric oxide scavenging assay, and β-carotene bleaching assays. Results: Qualified L. japonica flowering bud in Thailand was presented that the contents of loss on drying, total ash, acid-insoluble ash, and water should not be >10.11%, 6.59%, 1.14%, and 10.82% by weight, respectively. The ethanol and water soluble extractive values should not be < 16.46% and 28.88% by weight, respectively. Chlorogenic acid content in L. japonica flowering bud was found to be 2.24 ± 0.50 g/100 g of crude drug. L. japonica flowering bud showed DPPH and nitric oxide scavenging activities as well as reducing power property. Conclusion: This pharmacognostic specification with special reference to the chlorogenic acid content can be used for quality control of L. japonica flowering bud in Thailand. The potential antioxidant of this crude drug was demonstrated in vitro.


Pharmacognosy Research | 2017

Pharmacognostic specifications and lawsone content of Lawsonia inermis leaves

Rawiwan Charoensup; Thidarat Duangyod; Chanida Palanuvej; Nijsiri Ruangrungsi

Background: Lawsonia inermis L. has been used as a traditional or folk medicine for the treatment of a wide range of skin infectious diseases. Objective: The objective of this study was to determine the pharmacognostic specifications and lawsone contents of L. inermis leaves. Materials and Methods: The pharmacognostic specifications of L. inermis leaves from 12 sources were evaluated according to the WHO guideline of quality control method for medicinal plant materials. The lawsone contents were analyzed by thin-layer chromatography (TLC) coupled with densitometry and image analysis. Results: Microscopic evaluation of L. inermis powders showed the fragment of mesophyll, fragment of parenchyma, epidermis layer with stomata, and the rosette crystal of calcium oxalate. Physicochemical parameters revealed that total ash, acid-insoluble ash, loss on drying, and water content should be not <6.98, 1.12, 8.08, and 9.86% of dried weight, respectively, whereas ethanol and water extractive values should be not < 19.67 and 23.06% of dried weight, respectively. The content of lawsone in L. inermis leaves by TLC-densitometry was found to be 0.76 ± 0.05 g/100 g of dried crude drug, whereas the lawsone content evaluation by TLC image analysis was found to be 0.87 ± 0.11 g/100 g of dried crude drug. The validation of the methods revealed that both TLC-densitometry and TLC image analysis showed a good sensitivity and accuracy for lawsone quantitation in L. inermis. Conclusion: The pharmacognostic specifications could be used as the standardization data of L. inermis leaves, and the development of TLC method could be applied to determine lawsone content in this plant material.


Journal of advanced pharmaceutical technology & research | 2017

Leptocarpus disjunctus prolongs sleeping time and increases nonrapid eye movement sleep with additional anxiolytic capacity

Watchara Damjuti; Thanes Fuangfoo; Chanida Palanuvej; Tingli Li; Nijsiri Ruangrungsi

Leptocarpus disjunctus Mast. (Restionaceae) is an edible plant which has indigenous warnings regarding its side effects which can manifest as dizziness. This study investigated hypnotic and anxiolytic properties using several animal models. Anxiolytic activities were evaluated using locomotor determination by elevated plus-maze test, open-field test, and rotarod performance test. Hypnotic activities were performed using pentobarbital sodium-induced sleeping time test. Sleep architecture and quality were obtained from sleep–wake analysis and nonrapid eye movement (NREM) delta activity using electroencephalography. An ethanolic extract of L. disjunctus indicated effective potencies for hypnotic test, locomotor activities, and sleep–wake analysis. Ethanolic extract showed a dose relationship with sleeping time for pentobarbital-induced sleeping time test (P < 0.01) and also an antagonistic effect on shortening in sleep time induced by flumazenil. The consort significantly decreased locomotor activities among animals undergoing elevated plus-maze test, open-field test, and rotarod performance test, whereas sleep–wake analysis showed that sleeping time and NREM sleep increased. Ethanolic extract of L. disjunctus was shown to be anxiolytic, with the possibly of benzodiazepine-like hypnotic activity.


Journal of advanced pharmaceutical technology & research | 2016

Characterization of Mangifera indica cultivars in Thailand based on macroscopic, microscopic, and genetic characters

Aunyachulee Ganogpichayagrai; Kanchana Rungsihirunrat; Chanida Palanuvej; Nijsiri Ruangrungsi

Thai mango cultivars are classified into six groups plus one miscellaneous group according to germplasm database for mango. Characterization is important for conservation and the development of Thai mango cultivars. This study investigated macroscopic, microscopic leaf characteristics, and genetic relationship among 17 cultivars selected from six groups of mango in Thailand. Selected mango samples were obtained from three different locations in Thailand (n = 57). They were observed for their leaf and fruit macroscopic characteristics. Leaf measurement for the stomatal number, veinlet termination number, and palisade ratio was evaluated under a microscope attached with digital camera. DNA fingerprint was performed using CTAB extraction of DNA and inter-simple sequence repeat (ISSR) amplification. Forty-five primers were screened; then, seven primers that amplified the reproducible band patterns were selected to amplified and generate dendrogram by Unweighted Pair-Group Method with Arithmetic Average. These selected 17 Thai mango cultivars had individually macroscopic characteristics based on fruits and leaves. For microscopic characteristics, the stomatal number, veinlet termination number, and palisade ratio were slightly differentiable. For genetic identification, 78 bands of 190-2660 bps were amplified, of which 82.05% were polymorphic. The genetic relationship among these cultivars was demonstrated and categorized into two main clusters. It was shown that ISSR markers could be useful for Thai mango cultivar identification.


Journal of advanced pharmaceutical technology & research | 2015

Pharmacognostic evaluation with reference to catechin content and antioxidant activities of pale catechu in Thailand

Thidarat Duangyod; Chanida Palanuvej; Nijsiri Ruangrungsi

Pale catechu, a well-known crude drug, has been widely used for anti-diarrhea. Due to its medicinal usage, this study was performed to evaluate the pharmacognostic and antioxidant properties as well as catechins contents of pale catechu in Thailand. Twenty samples of pale catechu collected from traditional drug stores throughout Thailand were investigated. Antioxidant activities, total phenolic, nontannin phenolic, and total tannin contents were evaluated. (+)-catechin and (−)-epicatechin were quantitatively analyzed by high performance liquid chromatography. The results revealed that most of pale catechu samples were adulterated according to high ash values. Qualified pale catechu in Thailand were demonstrated for their average contents of total ash, acid insoluble ash, loss on drying, and moisture as 5.20 ± 0.19, 1.61 ± 0.17, 13.14 ± 0.10, and 13.20 ± 1.07 g/100 g of dry weight, respectively. The ethanol and water soluble extractive matters were 91.66 ± 5.16 and 44.59 ± 3.18 g/100 g of dry weight respectively. (+)-catechin in theses samples was 478.87 ± 2.77 μg/mg of crude drug, whereas (−)- epicatechin was found to be trace (< limit of quantitation). The promising antioxidant activities were demonstrated compared to (+)- catechin hydrate.


Pharmacognosy Research | 2014

Pharmacognostic specifications and quantification of (+)-catechin and (-)-epicatechin in Pentace burmanica stem bark.

Thidarat Duangyod; Chanida Palanuvej; Nijsiri Ruangrungsi

Background: According to Thai traditional medicine, Pentace burmanica Kurz. stem bark has been used as crude drug for treating diarrhea. However, the crude drug is also found susceptible to adulteration. Objectives: To develop specific standardization parameters of P. burmanica stem bark in Thailand and to determine the (+)-catechin and (-)-epicatechin contents of P. burmanica stem bark by HPLC analysis. Materials and Methods: P. burmanica stem barks from various sources throughout Thailand were investigated according to WHO guideline of the pharmacognostic specification. High performance liquid chromatography (HPLC) was performed for (+)-catechin and (-)-epicatechin quantification. Results: Macroscopic evaluation was demonstrated as whole plant drawing. Microscopic evaluation of stem bark powdered drug showed fragment of fibers, resin masses, tannin masses, starch grain, calcium oxalate, and fragment of parenchyma. Physico-chemical parameters revealed that total ash, acid insoluble ash, loss on drying, and water content should be not more than 3.58, 0.50, 8.40, and 9.70% of dry weight respectively; while ethanol and water soluble extractive values should not be less than 21.90 and 19.06% of dry weight respectively. Both (+)-catechin and (-)-epicatechin were existed in P. burmanica ethanolic extract. Owing to the small amount of (+)-catechin, quantitation of its content was omitted. However, (-)-epicatechin contents was found as 59.74 ± 1.69μg/mg of crude extract. Conclusion: The pharmacognostic investigations can be used to set the standard parameters of P. burmanica stem bark in Thailand. HPLC method can be applied to determine (+)-catechin and (-)-epicatechin content in plant materials.


Pharmacognosy Journal | 2014

Pharmacognostic evaluation and chrysazin quantitation of Xyris indica flowering heads

Chuanchom Khuniad; Worathat Thitikornpong; Chanida Palanuvej; Nijsiri Ruangrungsi

Objectives: The present study aimed to establish quality specification of Xyris indica L. flowering heads. The pharmacognostic parameters were investigated. Chrysazin contents were analyzed by TLC image analysis using ImageJ software compared to TLC-densitometry. Methods: X. indica flowering heads from 15 different sources in Thailand were collected. Morphological and physicochemical parameters were characterized. Chrysazin was successively extracted and determined by TLC image analysis using ImageJ software and TLC-densitometry. Results: Macroscopic study was illustrated as whole plant drawing. The microscopic study showed fragment of corolla, seeds, pollen grain and staminode. The pharmacognostic parameters revealed that the loss on drying, total ash, acid-insoluble ash and water content should be not more than 6.90, 2.50, 0.41, and 11.12 of % dry weight respectively while water and ethanol-soluble extractive values should be not less than 6.59 and 4.03 of % dry weight respectively. TLC fingerprint revealed clearly chrysazin yellow fluorescent band at 365 nm. Chrysazin quantitation by TLC image analysis and TLC densitometry were developed and validated. Chrysazin content was 0.022 ± 0.001 % dry weight by both methods. There was no statistically significantly difference between these methods. Conclusion: This study provided pharmacognostic specification and chrysazin content of X. indica flowering heads that can be used for basic quality control and standardization of plant material. TLC image analysis using ImageJ software showed reliable and convenient for analysis of chrysazin content in this crude drug.

Collaboration


Dive into the Chanida Palanuvej's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge