Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chanjuan Zhang is active.

Publication


Featured researches published by Chanjuan Zhang.


PLOS ONE | 2013

Elucidation of miRNAs-Mediated Responses to Low Nitrogen Stress by Deep Sequencing of Two Soybean Genotypes

Yejian Wang; Chanjuan Zhang; Qinnan Hao; Aihua Sha; Rong Zhou; Xinan Zhou; Longping Yuan

Nitrogen (N) is a major limiting factor in crop production, and plant adaptive responses to low N are involved in many post-transcriptional regulation. Recent studies indicate that miRNAs play important roles in adaptive responses. However, miRNAs in soybean adaptive responses to N limitation have been not reported. We constructed sixteen libraries to identify low N-responsive miRNAs on a genome-wide scale using samples from 2 different genotypes (low N sensitive and low N tolerant) subjected to various periods of low nitrogen stress. Using high-throughput sequencing technology (Illumina-Solexa), we identified 362 known miRNAs variants belonging to 158 families and 90 new miRNAs belonging to 55 families. Among these known miRNAs variants, almost 50% were not different from annotated miRNAs in miRBase. Analyses of their expression patterns showed 150 known miRNAs variants as well as 2 novel miRNAs with differential expressions. These differentially expressed miRNAs between the two soybean genotypes were compared and classified into three groups based on their expression patterns. Predicted targets of these miRNAs were involved in various metabolic and regulatory pathways such as protein degradation, carbohydrate metabolism, hormone signaling pathway, and cellular transport. These findings suggest that miRNAs play important roles in soybean response to low N and contribute to the understanding of the genetic basis of differences in adaptive responses to N limitation between the two soybean genotypes. Our study provides basis for expounding the complex gene regulatory network of these miRNAs.


Theoretical and Applied Genetics | 2015

Genetic analysis and molecular mapping of resistance gene to Phakopsora pachyrhizi in soybean germplasm SX6907

Haifeng Chen; Sheng Zhao; Zhonglu Yang; Aihua Sha; Qiao Wan; Chanjuan Zhang; Limiao Chen; Songli Yuan; Dezhen Qiu; Shuilian Chen; Zhihui Shan; Xinan Zhou

Key messageIn this study,Rpp6907,a novel resistance gene/allele toPhakopsora pachyrhiziin soybean, was mapped in a 111.9-kb region, including three NBS-LRR type predicted genes, on chromosome 18.AbstractSoybean rust caused by Phakopsora pachyrhizi Sydow has been reported in numerous soybean-growing regions worldwide. The development of rust-resistant varieties is the most economical and environmentally safe method to control the disease. The Chinese soybean germplasm SX6907 is resistant to P. pachyrhizi and exhibits immune reaction compared with the known Rpp genes. These characteristics suggest that SX6907 may carry at least one novel Rpp gene/allele. Three F2 populations from the crosses of SX6907 (resistant) and Tianlong 1, Zhongdou40, and Pudou11 (susceptible) were used to map the Rpp gene. Three resistance responses (immune, red-brown, and tan-colored lesion) were observed from the F2 individuals. The segregation follows a ratio of 1(resistance):2(heterozygous):1(susceptible), indicating that the resistance in SX6907 is controlled by a single incomplete dominant gene (designated as Rpp6907). Results showed that Rpp6907 was mapped on soybean chromosome 18 (molecular linkage group G, MLG G) flanked by simple sequence repeat (SSR) markers SSR24 and SSR40 at a distance of 111.9 kb. Among the ten genes marked within this 111.9-kb region between the two markers, three genes (Glyma18g51930, Glyma18g51950, and Glyma18g51960) are nucleotide-binding site and leucine-rich repeat-type genes. These genes may be involved in recognizing the presence of pathogens and ultimately conferring resistance. Based on resistance spectrum analysis and mapping results, we inferred that Rpp6907 is a novel gene different from Rpp1 in PI 200492, PI 561356, PI 587880A, PI 587886, and PI 594538A, or a new Rpp1-b allele.


Frontiers in Plant Science | 2016

RNA-Seq Analysis of Differential Gene Expression Responding to Different Rhizobium Strains in Soybean (Glycine max) Roots

Songli Yuan; Rong Li; Shuilian Chen; Haifeng Chen; Chanjuan Zhang; Limiao Chen; Qingnan Hao; Zhihui Shan; Zhonglu Yang; Dezhen Qiu; Xiaojuan Zhang; Xinan Zhou

The root nodule symbiosis (RNS) between legume plants and rhizobia is the most efficient and productive source of nitrogen fixation, and has critical importance in agriculture and mesology. Soybean (Glycine max), one of the most important legume crops in the world, establishes a nitrogen-fixing symbiosis with different types of rhizobia, and the efficiency of symbiotic nitrogen fixation in soybean greatly depends on the symbiotic host-specificity. Although, it has been reported that rhizobia use surface polysaccharides, secretion proteins of the type-three secretion systems and nod factors to modulate host range, the host control of nodulation specificity remains poorly understood. In this report, the soybean roots of two symbiotic systems (Bradyrhizobium japonicum strain 113-2-soybean and Sinorhizobium fredii USDA205-soybean)with notable different nodulation phenotypes and the control were studied at five different post-inoculation time points (0.5, 7–24 h, 5, 16, and 21 day) by RNA-seq (Quantification). The results of qPCR analysis of 11 randomly-selected genes agreed with transcriptional profile data for 136 out of 165 (82.42%) data points and quality assessment showed that the sequencing library is of quality and reliable. Three comparisons (control vs. 113-2, control vs. USDA205 and USDA205 vs. 113-2) were made and the differentially expressed genes (DEGs) between them were analyzed. The number of DEGs at 16 days post-inoculation (dpi) was the highest in the three comparisons, and most of the DEGs in USDA205 vs. 113-2 were found at 16 dpi and 21 dpi. 44 go function terms in USDA205 vs. 113-2 were analyzed to evaluate the potential functions of the DEGs, and 10 important KEGG pathway enrichment terms were analyzed in the three comparisons. Some important genes induced in response to different strains (113-2 and USDA205) were identified and analyzed, and these genes primarily encoded soybean resistance proteins, NF-related proteins, nodulins and immunity defense proteins, as well as proteins involving flavonoids/flavone/flavonol biosynthesis and plant-pathogen interaction. Besides, 189 candidate genes are largely expressed in roots andor nodules. The DEGs uncovered in this study provides molecular candidates for better understanding the mechanisms of symbiotic host-specificity and explaining the different symbiotic effects between soybean roots inoculated with different strains (113-2 and USDA205).


Plant Cell Reports | 2016

Isolation and functional characterization of a R2R3-MYB regulator of the anthocyanin biosynthetic pathway from Epimedium sagittatum

Wenjun Huang; A. B. M. Khaldun; Haiyan Lv; Liuwen Du; Chanjuan Zhang; Ying Wang

Key messageA R2R3-MYB transcription factorEsAN2was isolated fromEpimedium sagittatumand functionally characterized to regulate the anthocyanin biosynthetic pathway.AbstractEpimedium plants are used widely both as traditional Chinese medicinal herbs and ornamental perennials. Anthocyanins, acting as major contributors to plant color diversity, their biosynthesis are regulated by a series of transcription factors, including MYB, bHLH and WD40 protein. Previously, a MYB transcription factor involved in regulation of the anthocyanin pathway from Epimedium sagittatum, EsMYBA1 has been isolated, but was found to be expressed mostly in leaves. In this research, another MYB transcription factor, designated as EsAN2, was isolated from flowers by the screening of E. sagittatum EST database. Preferential expression of EsAN2 in flowers and flower buds was found. Ectopic expression of EsAN2 in tobacco significantly enhanced the anthocyanin biosynthesis and accumulation, both in leaves and flowers. Most structural genes of the anthocyanin biosynthetic pathway were strongly upregulated, as well as two bHLH regulators (NtAn1a and NtAn1b) in old leaves of tobacco overexpressing EsAN2, compared to the control plants. While only three structural genes, chalcone synthase (CHS), chalcone isomerase (CHI) and anthocyanidin synthase (ANS), were upregulated by EsAN2 ectopic expression in tobacco flowers. Yeast two-hybrid assay showed that EsAN2 was capable of interacting with four bHLH regulators of the anthocyanin biosynthetic pathway. These results suggest that EsAN2 is involved in regulation of the anthocyanin biosynthesis in Epimedium flowers. Identification and characterization of EsAN2 provide insight into the coloration of Epimedium flowers and a potential candidate gene for metabolic engineering of flavonoids in the future.


PLOS ONE | 2015

Genome-Wide Survey of the Soybean GATA Transcription Factor Gene Family and Expression Analysis under Low Nitrogen Stress

Chanjuan Zhang; Yuqing Hou; Qingnan Hao; Haifeng Chen; Limiao Chen; Songli Yuan; Zhihui Shan; Xiaojuan Zhang; Zhonglu Yang; Dezhen Qiu; Xinan Zhou; Wenjun Huang

GATA transcription factors are transcriptional regulatory proteins that contain a characteristic type-IV zinc finger DNA-binding domain and recognize the conserved GATA motif in the promoter sequence of target genes. Previous studies demonstrated that plant GATA factors possess critical functions in developmental control and responses to the environment. To date, the GATA factors in soybean (Glycine max) have yet to be characterized. Thus, this study identified 64 putative GATA factors from the entire soybean genomic sequence. The chromosomal distributions, gene structures, duplication patterns, phylogenetic tree, tissue expression patterns, and response to low nitrogen stress of the 64 GATA factors in soybean were analyzed to further investigate the functions of these factors. Results indicated that segmental duplication predominantly contributed to the expansion of the GATA factor gene family in soybean. These GATA proteins were phylogenetically clustered into four distinct subfamilies, wherein their gene structure and motif compositions were considerably conserved. A comparative phylogenetic analysis of the GATA factor zinc finger domain sequences in soybean, Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa) revealed four major classes. The GATA factors in soybean exhibited expression diversity among different tissues; some of these factors showed tissue-specific expression patterns. Numerous GATA factors displayed upregulation or downregulation in soybean leaf in response to low nitrogen stress, and two GATA factors GATA44 and GATA58 were likely to be involved in the regulation of nitrogen metabolism in soybean. Overexpression of GmGATA44 complemented the reduced chlorophyll phenotype of the Arabidopsis ortholog AtGATA21 mutant, implying that GmGATA44 played an important role in modulating chlorophyll biosynthesis. Overall, our study provides useful information for the further analysis of the biological functions of GATA factors in soybean and other crops.


Frontiers in Plant Science | 2016

Search for Nodulation and Nodule Development-Related Cystatin Genes in the Genome of Soybean (Glycine max)

Songli Yuan; Rong Li; Lei Wang; Haifeng Chen; Chanjuan Zhang; Limiao Chen; Qingnan Hao; Zhihui Shan; Xiaojuan Zhang; Shuilian Chen; Zhonglu Yang; Dezhen Qiu; Xinan Zhou

Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development, and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97–245 amino acid residues, different isoelectric points (pI) and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals, and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS)—specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16) was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to nodulation and nodule development. Overall, our results provide useful information or clues for our understanding of the functional diversity of legume cystatin family proteins in soybean nodulation and nodule development and for finding nodule-specific cysteine proteases in soybean.


International Journal of Molecular Sciences | 2016

Identification and Comparative Analysis of CBS Domain-Containing Proteins in Soybean (Glycine max) and the Primary Function of GmCBS21 in Enhanced Tolerance to Low Nitrogen Stress

Qingnan Hao; Weijuan Shang; Chanjuan Zhang; Haifeng Chen; Limiao Chen; Songli Yuan; Shuilian Chen; Xiaojuan Zhang; Xinan Zhou

Nitrogen is an important macronutrient required for plant growth, and is a limiting factor for crop productivity. Improving the nitrogen use efficiency (NUE) is therefore crucial. At present, the NUE mechanism is unclear and information on the genes associated with NUE in soybeans is lacking. cystathionine beta synthase (CBS) domain-containing proteins (CDCPs) may be implicated in abiotic stress tolerance in plants. We identified and classified a CBS domain–containing protein superfamily in soybean. A candidate gene for NUE, GmCBS21, was identified. GmCBS21 gene characteristics, the temporal expression pattern of the GmCBS21 gene, and the phenotype of GmCBS21 overexpression in transgenic Arabidopsis thaliana under low nitrogen stress were analyzed. The phenotypes suggested that the transgenic Arabidopsis thaliana seedlings performed better under the nitrogen-deficient condition. GmCBS21-overexpressing transgenic plants exhibit higher low nitrogen stress tolerance than WT plants, and this suggests its role in low nitrogen stress tolerance in plants. We conclude that GmCBS21 may serve as an excellent candidate for breeding crops with enhanced NUE and better yield.


Frontiers in Microbiology | 2018

Genome-Wide Identification and Classification of Soybean C2H2 Zinc Finger Proteins and Their Expression Analysis in Legume-Rhizobium Symbiosis

Songli Yuan; Xiangyong Li; Rong Li; Lei Wang; Chanjuan Zhang; Limiao Chen; Qingnan Hao; Xiaojuan Zhang; Haifeng Chen; Zhihui Shan; Zhonglu Yang; Shuilian Chen; Dezhen Qiu; Danxia Ke; Xinan Zhou

Root nodule symbiosis (RNS) is one of the most productive and economical systems for nitrogen fixation, and previous studies have shown that several nodule-specific C2H2-zinc finger proteins (ZFPs) play important roles in symbiosis establishment and nodule function. However, C2H2-ZFPs are the most widespread ZFPs in eukaryotes, and a great variation of structure and function exist among the family members. It remains largely unclear whether or not special types of C2H2-ZF genes participate in symbiosis, especially in soybean. In the present study, we performed a genome-wide survey of soybean C2H2-ZF genes, and 321 soybean C2H2-ZF genes were identified and classified into 11 clearly distinguishable subsets (Gm-t1-SF, Gm-t2-SF, Gm-1i-Q-SF, Gm-1i-M-SF, Gm-1i-Z-SF, Gm-1i-D-SF, Gm-2i-Q-SF, Gm-2i-M-SF, Gm-2i-Mix-SF, Gm-3i-SF, and Gm-4i-SF) based on the arrangements, numbers, and types of C2H2-ZF domains. Phylogenetic and gene ontology analyses were carried out to assess the conserved sequence and GO function among these subsets, and the results showed that the classification of soybean C2H2-ZFPs was reasonable. The expression profile of soybean C2H2-ZFPs in multiple tissues showed that nearly half of soybean C2H2-ZFPs within different subsets had expressions in nodules, including a clustering branch consisting of 11 Gm-1i-Q-SF genes specifically expressed in symbiotic-relative tissues. RNA-Seq was used to identify symbiosis-related soybean C2H2-ZFPs, and the expression pattern of the soybean C2H2-ZFPs in roots and nodules at different development stages showed that soybean C2H2-ZFPs mainly played roles in nodule development or nodule function rather than nodulation signal transduction, and nearly half of these genes had high expressions and/or different expression patterns during soybean nodule development, especially for the six clustering branches of genes consisting of different subsets of C2H2-ZFPs. Furthermore, the selected symbiosis-related soybean C2H2-ZFPs might function in legume-rhizobium symbiosis through regulating or interacting with other key proteins. Taken together, our findings provided useful information for the study on classification and conservative function of C2H2-ZFPs, and offered solid evidence for investigation of rhizobium symbiosis-related C2H2-ZFPs in soybean or other legumes.


Plant Cell Tissue and Organ Culture | 2017

Comparative analyses of transcriptome and proteome in response to cotton bollworm between a resistant wild soybean and a susceptible soybean cultivar

Xiaoyi Wang; Jianhua Lu; Haifeng Chen; Zhihui Shan; Xinjie Shen; Bingbing Duan; Chanjuan Zhang; Zhonglu Yang; Xiaojuan Zhang; Dezhen Qiu; Shuilian Chen; Xinan Zhou; Yongqing Jiao

Soybean is an important oil and protein crop in the world. Cotton bollworm (Helicoverpa armigera) is one of primary defoliating insects which seriously damage the soybean production. The wild soybean, ED059, was reported to be highly resistant to H. armigera. However, the molecular mechanism of resistance to H. armigera remains unknown. In this study, we conducted the transcript and protein profilings for ED059 and a susceptible soybean cultivar (cv.) Tianlong 2. In summary, 2213 genes and 116 proteins were specifically expressed in response to H. armigera in ED059, while 2179 genes and 9 proteins were specifically expressed in cv. Tianlong 2. Four hundred and four genes were significantly up-regulated in response to H. armigera in ED059 while down-regulated or not changed in cv. Tianlong 2. GO analyses showed the specifically expressed genes in ED059 were mainly enriched in metabolism-related pathways. The function of one potential resistant gene involved in the phenylpropanoid pathway was confirmed by use of transgenic Arabidopsis. Our study provided useful resources for the soybean improvement, which could contribute to the elucidation of defense mechanisms against chewing insects in plants.


PLOS ONE | 2017

Stability evaluation of reference genes for gene expression analysis by RT-qPCR in soybean under different conditions

Qiao Wan; Shuilian Chen; Zhihui Shan; Zhonglu Yang; Limiao Chen; Chanjuan Zhang; Songli Yuan; Qinnan Hao; Xiaojuan Zhang; Dezhen Qiu; Haifeng Chen; Xinan Zhou

Real-time quantitative reverse transcription PCR is a sensitive and widely used technique to quantify gene expression. To achieve a reliable result, appropriate reference genes are highly required for normalization of transcripts in different samples. In this study, 9 previously published reference genes (60S, Fbox, ELF1A, ELF1B, ACT11, TUA5, UBC4, G6PD, CYP2) of soybean [Glycine max (L.) Merr.] were selected. The expression stability of the 9 genes was evaluated under conditions of biotic stress caused by infection with soybean mosaic virus, nitrogen stress, across different cultivars and developmental stages. ΔCt and geNorm algorithms were used to evaluate and rank the expression stability of the 9 reference genes. Results obtained from two algorithms showed high consistency. Moreover, results of pairwise variation showed that two reference genes were sufficient to normalize the expression levels of target genes under each experimental setting. For virus infection, ELF1A and ELF1B were the most stable reference genes for accurate normalization. For different developmental stages, Fbox and G6PD had the highest expression stability between two soybean cultivars (Tanlong No. 1 and Tanlong No. 2). ELF1B and ACT11 were identified as the most stably expressed reference genes both under nitrogen stress and among different cultivars. The results showed that none of the candidate reference genes were uniformly expressed at different conditions, and selecting appropriate reference genes was pivotal for gene expression studies with particular condition and tissue. The most stable combination of genes identified in this study will help to achieve more accurate and reliable results in a wide variety of samples in soybean.

Collaboration


Dive into the Chanjuan Zhang's collaboration.

Top Co-Authors

Avatar

Xinan Zhou

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Haifeng Chen

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dezhen Qiu

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shuilian Chen

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Xiaojuan Zhang

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Zhonglu Yang

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Zhihui Shan

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Limiao Chen

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Songli Yuan

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Qingnan Hao

Crops Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge