Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chann Lagadec is active.

Publication


Featured researches published by Chann Lagadec.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Metabolic state of glioma stem cells and nontumorigenic cells

Erina Vlashi; Chann Lagadec; Laurent Vergnes; Tomoo Matsutani; Kenta Masui; Maria Poulou; Ruxandra Popescu; Lorenza Della Donna; Patrick Evers; Carmen Dekmezian; Karen Reue; Heather R. Christofk; Paul S. Mischel; Frank Pajonk

Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.


Journal of the National Cancer Institute | 2009

In Vivo Imaging, Tracking, and Targeting of Cancer Stem Cells

Erina Vlashi; Kwanghee Kim; Chann Lagadec; Lorenza Della Donna; John Tyson McDonald; Mansoureh Eghbali; James Sayre; Encrico Stefani; William H. McBride; Frank Pajonk

BACKGROUND There is increasing evidence that solid cancers contain cancer-initiating cells (CICs) that are capable of regenerating a tumor that has been surgically removed and/or treated with chemotherapy and/or radiation therapy. Currently, cell surface markers, like CD133 or CD44, are used to identify CICs in vitro; however, these markers cannot be used to identify and track CICs in vivo. The 26S proteasome is the main regulator of many processes within a proliferating cell, and its activity may be altered depending on the phenotype of a cell. METHODS Human glioma and breast cancer cells were engineered to stably express ZsGreen fused to the carboxyl-terminal degron of ornithine decarboxylase, resulting in a fluorescent fusion protein that accumulates in cells in the absence of 26S proteasome activity; activities of individual proteases were monitored in a plate reader by detecting the cleavage of fluorogenic peptide substrates. Proteasome subunit expression in cells expressing the fusion protein was assessed by quantitative reverse transcription-polymerase chain reaction, and the stem cell phenotype of CICs was assessed by a sphere formation assay, by immunohistochemical staining for known stem cell markers in vitro, and by analyzing their tumorigenicity in vivo. CICs were tracked by in vivo fluorescence imaging after radiation treatment of tumor-bearing mice and targeted specifically via a thymidine kinase-degron fusion construct. All P values were derived from two-sided tests. RESULTS Cancer cells grown as sphere cultures in conditions, which enrich for cancer stem cells (CSCs), had decreased proteasome activity relative to the respective monolayers (percent decrease in chymotryptic-like activity of sphere cultures relative to monolayers--U87MG: 26.64%, 95% confidence interval [CI] = 10.19 to 43.10, GL261, 52.91%, 95% CI = 28.38 to 77.43). The cancer cells with low proteasome activity can thus be monitored in vitro and in vivo by the accumulation of a fluorescent protein (ZsGreen) fused to a degron that targets it for 26S proteasome degradation. In vitro, ZsGreen-positive cells had increased sphere-forming capacity, expressed CSC markers, and lacked differentiation markers compared with ZsGreen-negative cells. In vivo, ZsGreen-positive cells were approximately 100-fold more tumorigenic than ZsGreen-negative cells when injected into nude mice (ZsGreen positive, 30 mice per group; ZsGreen negative, 31 mice per group), and the number of CICs in tumors increased after 72 hours post radiation treatment. CICs were selectively targeted via a proteasome-dependent suicide gene, and their elimination in vivo led to tumor regression. CONCLUSION Our results demonstrate that reduced 26S proteasome activity is a general feature of CICs that can easily be exploited to identify, track, and target them in vitro and in vivo.


Stem Cells | 2012

Radiation‐Induced Reprogramming of Breast Cancer Cells

Chann Lagadec; Erina Vlashi; Lorenza Della Donna; Carmen Dekmezian; Frank Pajonk

Breast cancers are thought to be organized hierarchically with a small number of breast cancer stem cells (BCSCs) able to regrow a tumor while their progeny lack this ability. Recently, several groups reported enrichment for BCSCs when breast cancers were subjected to classic anticancer treatment. However, the underlying mechanisms leading to this enrichment are incompletely understood. Using non‐BCSCs sorted from patient samples, we found that ionizing radiation reprogrammed differentiated breast cancer cells into induced BCSCs (iBCSCs). iBCSCs showed increased mammosphere formation, increased tumorigenicity, and expressed the same stemness‐related genes as BCSCs from nonirradiated samples. Reprogramming occurred in a polyploid subpopulation of cells, coincided with re‐expression of the transcription factors Oct4, sex determining region Y‐box 2, Nanog, and Klf4, and could be partially prevented by Notch inhibition. We conclude that radiation may induce a BCSC phenotype in differentiated breast cancer cells and that this mechanism contributes to increased BCSC numbers seen after classic anticancer treatment. STEM CELLS 2012;30:833–844


Oncogene | 2009

TrkA overexpression enhances growth and metastasis of breast cancer cells

Chann Lagadec; Samuel Meignan; Eric Adriaenssens; B Foveau; Elsa Vanhecke; Rodrigue Romon; Robert-Alain Toillon; B Oxombre; Hubert Hondermarck; X Le Bourhis

The Trk family of neurotrophin tyrosine kinase receptors is emerging as an important player in carcinogenic progression in non-neuronal tissues. Here, we show that breast tumors present high levels of TrkA and phospho-TrkA compared to normal breast tissues. To further evaluate the precise functions of TrkA overexpression in breast cancer development, we have performed a series of biological tests using breast cancer cells that stably overexpress TrkA. We show that (1) TrkA overexpression promoted cell growth, migration and invasion in vitro; (2) overexpression of TrkA per se conferred constitutive activation of its tyrosine kinase activity; (3) signal pathways including PI3K-Akt and ERK/p38 MAP kinases were activated by TrkA overexpression and were required for the maintenance of a more aggressive cellular phenotype; and (4) TrkA overexpression enhanced tumor growth, angiogenesis and metastasis of xenografted breast cancer cells in immunodeficient mice. Moreover, recovered metastatic cells from the lungs exhibited enhanced anoikis resistance that was abolished by the pharmacological inhibitor K252a, suggesting that TrkA-promoted breast tumor metastasis could be mediated at least in part by enhancing anoikis resistance. Together, these results provide the first direct evidence that TrkA overexpression enhances the tumorigenic properties of breast cancer cells and point to TrkA as a potential target in breast cancer therapy.


Breast Cancer Research | 2010

Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment

Chann Lagadec; Erina Vlashi; Lorenza Della Donna; YongHong Meng; Carmen Dekmezian; Kwanghee Kim; Frank Pajonk

IntroductionRecent data indicate a hierarchical organization of many solid cancers, including breast cancer, with a small number of cancer initiating cells (CICs) that have the ability to self-renew and exhibit multi-lineage potency. We, and others, have demonstrated that CICs in breast cancer and glioma are relatively resistant to ionizing radiation if compared to their non-tumorigenic counterparts. However, the extent of the remaining self-renewing capacity of CICs after fractions of radiation is currently unknown. We hypothesized that CICs, in contrast to their non-tumorigenic counterparts, not only survive fractions of ionizing radiation but also retain the CIC phenotype as defined by operational means.MethodsWe used two marker systems to identify breast CICs (CD24-/low/CD44high, or lack of proteasome activity) and performed sphere-forming assays after multiple clinical fractions of radiation. Lineage tracking was performed by membrane staining. Cell cycle distribution and RNA content were assessed by flow cytometry and senescence was assessed via β-galactosidase staining.ResultsWe demonstrated that irradiated CICs survived and retained their self-renewal capacity for at least four generations. We show that fractionated radiation not only spared CICs but also mobilized them from a quiescent/G0 phase of the cell cycle into actively cycling cells, while the surviving non-tumorigenic cells were driven into senescence.ConclusionsThe breast CIC population retains increased self-renewal capacity over several generations and therefore, we conclude that increases in the number of CICs after sublethal doses of radiation have potential clinical importance. Prevention of this process may lead to improved clinical outcome.


Cancer Research | 2010

Ionizing Radiation Activates the Nrf2 Antioxidant Response

J. Tyson McDonald; Kwanghee Kim; Andrew J. Norris; Erina Vlashi; Tiffany M. Phillips; Chann Lagadec; Lorenza Della Donna; Josephine A. Ratikan; Heather Szelag; Lynn Hlatky; William H. McBride

The transcription factor NF-E2-related factor 2 (Nrf2) binds the antioxidant DNA response element (ARE) to activate important cellular cytoprotective defense systems. Recently several types of cancers have been shown to overexpress Nrf2, but its role in the cellular response to radiation therapy has yet to be fully determined. In this study, we report that single doses of ionizing radiation from 2 to 8 Gy activate ARE-dependent transcription in breast cancer cells in a dose-dependent manner, but only after a delay of five days. Clinically relevant daily dose fractions of radiation also increased ARE-dependent transcription, but again only after five days. Downstream activation of Nrf2-ARE-dependent gene and protein markers, such as heme oxygenase-1, occurred, whereas Nrf2-deficient fibroblasts were incapable of these responses. Compared with wild-type fibroblasts, Nrf2-deficient fibroblasts had relatively high basal levels of reactive oxygen species that increased greatly five days after radiation exposure. Further, in vitro clonogenic survival assays and in vivo sublethal whole body irradiation tests showed that Nrf2 deletion increased radiation sensitivity, whereas Nrf2-inducing drugs did not increase radioresistance. Our results indicate that the Nrf2-ARE pathway is important to maintain resistance to irradiation, but that it operates as a second-tier antioxidant adaptive response system activated by radiation only under specific circumstances, including those that may be highly relevant to tumor response during standard clinical dose-fractionated radiation therapy.


Breast Cancer Research and Treatment | 2014

Metabolic differences in breast cancer stem cells and differentiated progeny.

Erina Vlashi; Chann Lagadec; Laurent Vergnes; Karen Reue; Patricia Frohnen; Mabel Chan; Yazeed Alhiyari; Milana Bochkur Dratver; Frank Pajonk

In general, tumor cells display a more glycolytic phenotype compared to the corresponding normal tissue. However, it is becoming increasingly clear that tumors are composed of a heterogeneous population of cells. Breast cancers are organized in a hierarchical manner, with the breast cancer stem cells (BCSCs) at the top of the hierarchy. Here, we investigate the metabolic phenotype of BCSCs and their differentiated progeny. In addition, we determine the effect of radiation on the metabolic state of these two cell populations. Luminal, basal, and claudin-low breast cancer cell lines were propagated as mammospheres enriched in BCSCs. Lactate production, glucose consumption, and ATP content were compared with differentiated cultures. A metabolic flux analyzer was used to determine the oxygen consumption, extracellular acidification rates, maximal mitochondria capacity, and mitochondrial proton leak. The effect of radiation treatment of the metabolic phenotype of each cell population was also determined. BCSCs consume more glucose, produce less lactate, and have higher ATP content compared to their differentiated progeny. BCSCs have higher maximum mitochondrial capacity and mitochondrial proton leak compared to their differentiated progeny. Radiation treatment enhances the higher energetic state of the BCSCs, while decreasing mitochondrial proton leak. Our study indicated that breast cancer cells are heterogeneous in their metabolic phenotypes and BCSCs reside in a distinct metabolic state compared to their differentiated progeny. BCSCs display a reliance on oxidative phosphorylation, while the more differentiated progeny displays a more glycolytic phenotype. Radiation treatment affects the metabolic state of BCSCs. We conclude that interfering with the metabolic requirements of BCSCs may prevent radiation-induced reprogramming of breast cancer cells during radiation therapy, thus improving treatment outcome.


Stem Cells | 2014

The RNA‐Binding Protein Musashi‐1 Regulates Proteasome Subunit Expression in Breast Cancer‐ and Glioma‐Initiating Cells

Chann Lagadec; Erina Vlashi; Patricia Frohnen; Yazeed Alhiyari; Mabel Chan; Frank Pajonk

Cancer stem cells (CSCs) or tumor‐initiating cells, similar to normal tissue stem cells, rely on developmental pathways, such as the Notch pathway, to maintain their stem cell state. One of the regulators of the Notch pathway is Musashi‐1, a mRNA‐binding protein. Musashi‐1 promotes Notch signaling by binding to the mRNA of Numb, the negative regulator of Notch signaling, thus preventing its translation. CSCs have also been shown to downregulate their 26S proteasome activity in several types of solid tumors, thus making them resistant to proteasome‐inhibitors used as anticancer agents in the clinic. Interestingly, the Notch pathway can be inhibited by proteasomal degradation of the Notch intracellular domain (Notch‐ICD); therefore, downregulation of the 26S proteasome activity can lead to stabilization of Notch‐ICD. Here, we present evidence that the downregulation of the 26S proteasome in CSCs constitutes another level of control by which Musashi‐1 promotes signaling through the Notch pathway and maintenance of the stem cell phenotype of this subpopulation of cancer cells. We demonstrate that Musashi‐1 mediates the downregulation of the 26S proteasome by binding to the mRNA of NF‐YA, the transcriptional factor regulating 26S proteasome subunit expression, thus providing an additional route by which the degradation of Notch‐ICD is prevented, and Notch signaling is sustained. Stem Cells 2014;32:135–144


International Journal of Radiation Oncology Biology Physics | 2013

Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

Chann Lagadec; Erina Vlashi; Yazeed Alhiyari; Tiffany M. Phillips; Milana Bochkur Dratver; Frank Pajonk

PURPOSE To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. METHODS AND MATERIALS Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription-polymerase chain reaction to study the Notch pathway in response to radiation. RESULTS We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose-dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. CONCLUSIONS Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.


Molecular & Cellular Proteomics | 2007

Nerve Growth Factor Receptor TrkA Signaling in Breast Cancer Cells Involves Ku70 to Prevent Apoptosis

Emmanuelle Com; Chann Lagadec; Adeline Page; Ikram El Yazidi-Belkoura; Christian Slomianny; Ambre Spencer; Djilali Hammache; Brian B. Rudkin; Hubert Hondermarck

The nerve growth factor (NGF)-tyrosine kinase receptor TrkA plays a critical role in various neuronal and non-neuronal cell types by regulating cell survival, differentiation, and proliferation. In breast cancer cells, TrkA stimulation results in the activation of cellular growth, but downstream signaling largely remains to be described. Here we used a proteomics-based approach to identify partners involved in TrkA signaling in breast cancer cells. Wild type and modified TrkA chimeric constructs with green fluorescent protein were transfected in MCF-7 cells, and co-immunoprecipitated proteins were separated by SDS-PAGE before nano-LC-MS/MS analysis. Several TrkA putative signaling partners were identified among which was the DNA repair protein Ku70, which is increasingly reported for its role in cell survival and carcinogenesis. Physiological interaction of Ku70 with endogenous TrkA was induced upon NGF stimulation in non-transfected cells, and co-localization was observed with confocal microscopy. Mass spectrometry analysis and Western blotting of phosphotyrosine immunoprecipitates demonstrated the induction of Ku70 tyrosine phosphorylation upon NGF stimulation. Interestingly no interaction between TrkA and Ku70 was detected in PC12 cells in the absence or presence of NGF, suggesting that it is not involved in the initiation of neuronal differentiation. In breast cancer cells, RNA interference indicated that whereas Ku70 depletion had no direct effect on cell survival, it induced a strong potentiation of apoptosis in TrkA-overexpressing cells. In conclusion, TrkA signaling appears to be proapoptotic in the absence of Ku70, and this protein might therefore play a role in the long time reported ambivalence of tyrosine kinase receptors that can exhibit both anti- and eventually proapoptotic activities.

Collaboration


Dive into the Chann Lagadec's collaboration.

Top Co-Authors

Avatar

Frank Pajonk

University of California

View shared research outputs
Top Co-Authors

Avatar

Erina Vlashi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwanghee Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

YongHong Meng

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge