Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chantal Bourget is active.

Publication


Featured researches published by Chantal Bourget.


Biomaterials | 2009

The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect.

Maritie Grellier; Pedro L. Granja; Jean-Christophe Fricain; Sílvia J. Bidarra; Martine Renard; Reine Bareille; Chantal Bourget; Joëlle Amédée; Mário A. Barbosa

Bone regeneration seems to be dependant on cell communication between osteogenic and endothelial cells arising from surrounding blood vessels. This study aims to determine whether endothelial cells can regulate the osteogenic potential of osteoprogenitor cells in vitro and in vivo, in a long bone defect, when co-immobilized in alginate microspheres. Alginate is a natural polymer widely used as a biomaterial for cell encapsulation. Human osteoprogenitors (HOP) from bone marrow mesenchymal stem cells were immobilized alone or together with human umbilical vein endothelial cells (HUVEC) inside irradiated, oxidized and RGD-grafted alginate microspheres. Immobilized cells were cultured in dynamic conditions and cell metabolic activity increased during three weeks. The gene expression of alkaline phosphatase and osteocalcin, both specific markers of the osteoblastic phenotype, and mineralization deposits were upregulated in co-immobilized HOPs and HUVECs, comparing to the immobilization of monocultures. VEGF secretion was also increased when HOPs were co-immobilized with HUVECs. Microspheres containing co-cultures were further implanted in a bone defect and bone formation was analysed by muCT and histology at 3 and 6 weeks post-implantation. Mineralization was observed inside and around the implanted microspheres containing the immobilized cells. However, when HOPs were co-immobilized with HUVECs, mineralization significantly increased. These findings demonstrate that co-immobilization of osteogenic and endothelial cells within RGD-grafted alginate microspheres provides a promising strategy for bone tissue engineering.


Cellular Physiology and Biochemistry | 2004

Human primary endothelial cells stimulate human osteoprogenitor cell differentiation.

Bertrand Guillotin; Chantal Bourget; Murielle Remy-Zolgadri; Reine Bareille; Philippe Fernandez; Véronique Conrad; Joëlle Amédée-Vilamitjana

Bone development and remodeling depend on complex interactions between bone-forming osteoblasts and other cells present within the bone microenvironment, particularly endothelial cells that may be pivotal members of a complex interactive communication network in bone. While cell cooperation was previously established between Human OsteoProgenitor cells (HOP) and Human Umbilical Vein Endothelial Cells (HUVEC) the aim of our study was to investigate if this interaction is specific to Human Endothelial cell types (ECs) from different sources. Osteoblastic cell differentiation analysis performed using different co-culture models with direct contact revealed that Alkaline Phosphatase (Al-P) activity was only increased by the direct contact of HOP with human primary vascular endothelial cell types including endothelial precursor cells (EPCs) isolated from blood cord, endothelial cells from Human Saphen Vein (HSV) while a transformed cell line, the Human Bone Marrow Endothelial Cell Line (HBMEC) did not modify osteoblastic differentiation of HOP. Because connexin 43, a specific gap junction protein, seemed to be involved in HUVEC/HOP cell cooperation, expression by RT-PCR and immunocytochemistry of this gap junctional protein was investigated in EPCs, HSV and HBMEC. Both endothelial cells are positive to this protein and the disruption of gap junction communication using 18α-glycyrrhetinic acid treatment decreased the positive effect of these endothelial co-cultures on HOP differentiation as was previously demonstrated for HUVEC and HOP co-cultures. These data seem to indicate that this cross talk between HOP and ECs, through gap junction communication constitutes an additional concept in cell differentiation control.


Journal of Cellular Biochemistry | 2009

Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells

Maritie Grellier; Nancy Ferreira-Tojais; Chantal Bourget; Reine Bareille; Fabien Guillemot; Joëlle Amédée

Proper bone remodeling requires an active process of angiogenesis which in turn supplies the necessary growth factors and stem cells. This tissue cooperation suggests a cross‐talk between osteoblasts and endothelial cells. This work aims to identify the role of paracrine communication through vascular endothelial growth factor (VEGF) in co‐culture between osteoblastic and endothelial cells. Through a well defined direct contact co‐culture model between human osteoprogenitors (HOPs) and human umbilical vein endothelial cells (HUVECs), we observed that HUVECs were able to migrate along HOPs, inducing the formation of specific tubular‐like structures. VEGF165 gene expression was detected in the HOPs, was up‐regulated in the co‐cultured HOPs and both Flt‐1 and KDR gene expression increased in co‐cultured HUVECs. However, the cell rearrangement observed in co‐culture was promoted by a combination of soluble chemoattractive factors and not by VEGF165 alone. Despite having no observable effect on endothelial cell tubular‐like formation, VEGF appeared to have a crucial role in osteoblastic differentiation since the inhibition of its receptors reduced the co‐culture‐stimulated osteoblastic phenotype. This co‐culture system appears to enhance both primary angiogenesis events and osteoblastic differentiation, thus allowing for the development of new strategies in vascularized bone tissue engineering. J. Cell. Biochem. 106: 390–398, 2009.


Bone | 2008

Interaction between human umbilical vein endothelial cells and human osteoprogenitors triggers pleiotropic effect that may support osteoblastic function

B. Guillotin; Reine Bareille; Chantal Bourget; Laurence Bordenave; Joëlle Amédée

Osteogenesis occurs in striking interaction with angiogenesis. There is growing evidence that endothelial cells are involved in the modulation of osteoblast differentiation. We hypothesized that primary human umbilical vein endothelial cells (HUVEC) should be able to modulate primary human osteoprogenitors (HOP) function in an in vitro co-culture model. In a previous study we demonstrated that a 3 day to 3 week co-culture stimulates HOP differentiation markers such as Alkaline Phosphatase (ALP) activity and mineralization. In the present study we addressed the effects induced by the co-culture on HOP within the first 48 hours. As a prerequisite, we validated a method based on immuno-magnetic beads to separate HOP from HUVEC after co-culture. Reverse transcription-real time quantitative PCR studies demonstrated up-regulation of the ALP expression in the co-cultured HOP, confirming previous results. Surprisingly, down-regulation of runx2 and osteocalcin was also shown. Western blot analysis revealed co-culture induced down-regulation of Connexin43 expression in both cell types. Connexin43 function may be altered in co-cultured HOP as well. Stimulation of the cAMP pathway was able to counterbalance the effect of the co-culture on the ALP activity, but was not able to rescue runx2 mRNA level. Co-culture effect on HOP transcriptome was analyzed with GEArray cDNA microarray showing endothelial cells may also modulate HOP extracellular matrix production. In accordance with previous work, we propose endothelial cells may support initial osteoblastic proliferation but do not alter the ability of the osteoblasts to produce extracellular mineralizing matrix.


Journal of Tissue Engineering and Regenerative Medicine | 2009

Responsiveness of human bone marrow stromal cells to shear stress

Maritie Grellier; Reine Bareille; Chantal Bourget; Joëlle Amédée

We examined the hypothesis that human mesenchymal stem cells detect physiological mechanical signals. Human bone marrow stromal cells (HBMSCs) were exposed to fluid shear stress of 12 dynes/cm2 and analysed for their ability to express osteoblast‐specific markers and associated signalling pathways. HBMSCs showed a significant increase in alkaline phosphatase (ALP) gene expression and a marked decrease in type I collagen, while no effect on Cbfa1/Runx2 was detected. This regulation is related to p38 and ERK1/2 activation, although the use of specific inhibitors to these two MAP kinases suggests that ALP mRNA induction is especially dependent on p38 activity, while type I collagen downregulation is ERK1/2‐dependent. Interestingly, the expression of connexin43, which is involved in cell‐to‐cell communication of osteoblastic cells through gap junction formation, and its distribution through the cells, were modified by fluid flow (FF). HBMSCs are sensitive to shear stress and it appears essential to take their responsiveness into consideration before associating these regenerative cells with a bioactive biomaterial in a new bone tissue‐engineering strategy. Copyright


American Journal of Physiology-cell Physiology | 2010

Role of neural-cadherin in early osteoblastic differentiation of human bone marrow stromal cells cocultured with human umbilical vein endothelial cells

Haiyan Li; Richard Daculsi; Maritie Grellier; Reine Bareille; Chantal Bourget; Joëlle Amédée

In our previous studies, roles of gap junction and vascular endothelial growth factor in the cross-talking of human bone marrow stromal cells (HBMSCs) and human umbilical vein endothelial cells (HUVECs) have been extensively studied. The present study focused on the investigation of the roles of neural (N)-cadherin in early differentiation of HBMSCs in direct-contact cocultures with HUVECs for 24 and 48 h. Quantitative real-time polymerase chain reaction, immunofluorescence, Western blot, as well as functional studies were applied to perform the studies at both protein and gene levels. Results showed that cocultured cells expressed much higher N-cadherin than monocultured cells after 24 and 48 h of culture. We observed that N-cadherin concentrated in the membrane of cocultured HBMSCs (co-HBMSCs) while distributed within the cytoplasm of monocultured HBMSCs, which indicated that the cell-cell adhesion was improved between cocultured cells. In addition, more beta-catenin was found to translocate into the cocultured cells nuclei and more T cell factor-1 (TCF-1) were detected in cocultured cells than in the monocultured cells. Moreover, mRNA levels of early osteoblastic markers including alkaline phosphatase (ALP) and type I collagen (Col-I) of co-HBMSCs were significantly upregulated, whereas neutralization of N-cadherin led to a downregulation of ALP and Col-I in both of the HBMSCs and co-HBMSCs compared with untreated cells. Taking our findings together it can be concluded that cocultures of HBMSCs with HUVECs increased N-cadherin expression and improved cell-cell adhesion. Whether this applies only to osteoprogenitor cells or to all the cell types in the culture will need to be determined by further studies. Subsequently, signaling transduction might be induced with the participation of beta-catenin and TCF-1. With the N-cadherin-mediated cell-cell adhesion and signaling transductions, the early osteoblastic differentiation of co-HBMSCs was significantly upregulated.


PLOS ONE | 2011

The role of vascular actors in two dimensional dialogue of human bone marrow stromal cell and endothelial cell for inducing self-assembled network.

Haiyan Li; Richard Daculsi; Maritie Grellier; Reine Bareille; Chantal Bourget; Murielle Remy; Joëlle Amédée

Angiogenesis is very important for vascularized tissue engineering. In this study, we found that a two-dimensional co-culture of human bone marrow stromal cell (HBMSC) and human umbical vein endothelial cell (HUVEC) is able to stimulate the migration of co-cultured HUVEC and induce self-assembled network formation. During this process, expression of vascular endothelial growth factor (VEGF165) was upregulated in co-cultured HBMSC. Meanwhile, VEGF165-receptor2 (KDR) and urokinase-type plasminogen activator (uPA) were upregulated in co-cultured HUVEC. Functional studies show that neutralization of VEGF165 blocked the migration and the rearrangement of the cells and downregulated the expression of uPA and its receptor. Blocking of vascular endothelial-cadherin (VE-cad) did not affect the migration of co-cultured HUVEC but suppressed the self-assembled network formation. In conclusion, co-cultures upregulated the expression of VEGF165 in co-cultured HBMSC; VEGF165 then activated uPA in co-cultured HUVEC, which might be responsible for initiating the migration and the self-assembled network formation with the participation of VE-cad. All of these results indicated that only the direct contact of HBMSC and HUVEC and their respective dialogue are sufficient to stimulate secretion of soluble factors and to activate molecules that are critical for self-assembled network formation which show a great application potential for vascularization in tissue engineering.


Journal of Tissue Engineering and Regenerative Medicine | 2010

Human progenitor‐derived endothelial cells vs. venous endothelial cells for vascular tissue engineering: an in vitro study

Noëlie Thebaud; Reine Bareille; Murielle Remy; Chantal Bourget; Richard Daculsi; Laurence Bordenave

The isolation of endothelial progenitor cells from human peripheral blood generates a great hope in vascular tissue engineering because of particular benefit when compared with mature endothelial cells. We explored the capability of progenitor‐derived endothelial cells (PDECs) to line fibrin and collagen scaffolds in comparison with human saphenous and umbilical cord vein endothelial cells (HSVECs and HUVECs): (a) in a static situation, allowing definition of the optimal cell culture conditions with different media and cell‐seeding densities to check cell behaviour; (b) under shear stress conditions (flow chambers or tubular vascular constructs), allowing investigation of cell response and mRNA expression on both substrates by oligonucleotide microarray analysis and quantitative real‐time PCR. Well characterized PDECs: (a) could not be expanded adequately with the usual mature ECs culture media; (b) were able to colonize and grow on fibrin glue; (c) exhibited higher resistance to oxidative stress than HSVECs and HUVECs; (d) withstood physiological shear stress when lining both substrates in flow chambers, and their gene expression was regulated; (e) colonized a collagen‐impregnated vascular prosthesis and were able to sense mechanical forces. Our results provide an improved qualification of PDECs for vascular tissue engineering. Copyright


Journal of Biological Chemistry | 1999

Antisense oligonucleotides containing modified bases inhibit in vitro translation of Leishmania amazonensis mRNAs by invading the mini-exon hairpin.

Daniel Compagno; Jed N. Lampe; Chantal Bourget; Igor V. Kutyavin; Ludmila Yurchenko; Eugeny A. Lukhtanov; Vladimir V. Gorn; Howard B. Gamper; Jean-Jacques Toulmé

Complementary oligodeoxynucleotides (ODNs) that contain 2-aminoadenine and 2-thiothymine interact weakly with each other but form stable hybrids with unmodified complements. These selectively binding complementary (SBC) agents can invade duplex DNA and hybridize to each strand (Kutyavin, I. V., Rhinehart, R. L., Lukhtanov, E. A., Gorn, V. V., Meyer, R. B., and Gamper, H. B. (1996) Biochemistry 35, 11170–11176). Antisense ODNs with similar properties should be less encumbered by RNA secondary structure. Here we show that SBC ODNs strand invade a hairpin in the mini-exon RNA of Leishmania amazonensis and that the resulting heteroduplexes are substrates for Escherichia coli RNase H. SBC ODNs either with phosphodiester or phosphorothioate backbones form more stable hybrids with RNA than normal base (NB) ODNs. Optimal binding was observed when the entire hairpin sequence was targeted. Translation of L. amazonensis mRNA in a cell-free extract was more efficiently inhibited by SBC ODNs complementary to the mini-exon hairpin than by the corresponding NB ODNs. Nonspecific protein binding in the cell-free extract by phosphorothioate SBC ODNs rendered them ineffective as antisense agents in vitro. SBC phosphorothioate ODNs displayed a modest but significant improvement of leishmanicidal properties compared with NB phosphorothioate ODNs.


Cell Biology and Toxicology | 2005

In vitro endothelial cell susceptibility to xenobiotics: comparison of three cell types.

L'Azou B; Philippe Fernandez; Reine Bareille; Beneteau M; Chantal Bourget; Cambar J; Laurence Bordenave

In three different endothelial cell (EC) cultures (primary human umbilical cord vein, so-called HUVEC; and immortalized cell lines HBMEC and EA-hy-926), the effects of different xenobiotics were studied in order to standardize vascular EC models for in vitro pharmacotoxicological studies. Cell characteristics were first investigated by the production and the mRNA levels of known endothelial markers in the three EC culture models. EC secretory products, tissue plasminogen activator (tPA) and von Willebrand factor (vWF), were present in the supernatant of the immortalized cell lines. The mRNA levels of vWF, tPA, platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), and β -integrin subunit, which are involved in the control of platelet function, coagulation, and fibrinolysis as well as in cell–matrix interactions, were investigated in all EC types. For at least three parameters, cultured cells provided marked characteristics of EC phenotype, in HUVEC and in immortalized cell lines, regardless of their origin from the macro- or microcirculation. Toxicity experiments were assessed after 24 h exposure to cadmium, cyclosporin A and cisplatin by MTT assay. These experiments show nonsignificant difference in susceptibility to cyclosporin A and cadmium on HUVEC, HBMEC, and EA-hy-926. However, HBMEC, seems to be highly susceptible to cisplatin compared to HUVEC, the latter being more sensitive than EA-hy-926. For experiments conducted with cyclosporin and cadmium, cell lines could constitute an alternative material for routine cytotoxicity studies.

Collaboration


Dive into the Chantal Bourget's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Daculsi

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Eduard Brynda

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Elena Filova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jaroslav Chlupac

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Lucie Bacakova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Milan Houska

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomáš Riedel

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge