Chantal Cazevieille
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chantal Cazevieille.
Neurochemistry International | 1994
Chantal Cazevieille; A. Muller; Françoise Meynier; Nathalie Dutrait; Claude Bonne
The growing evidence that glutamate may be an important agent mediating ischemic damage to neurons, led us to investigate the possible protective effects of pharmacological agents against glutamate in a model system of cortical neurons. In this study we examined, in particular, the cytoprotective effect of prostaglandins. Experiments were carried out in vitro by using rat cortical neurons in culture for 10 days. They were incubated for 3h with glutamate (10 microM) in the presence or absence of various pharmacological agents including prostaglandins (PGD2, PGE1, PGE2, PGF2 alpha, PGI2, 6-Keto-PGF1 alpha, carba-TXA2, carba-PGI2 and PGF2 alpha-methylester). Increase in lacticodehydrogenase (LDH) release into the culture medium has been measured as an index of cell injury. When neurons were incubated with glutamate they released LDH due to NMDA-receptor activation since D-L-2-amino-5-phosphonovaleric acid, a specific receptor antagonist, protected the cells. The protective activity of oxypurinol, amflutizole, superoxide dismutase, NG nitro-L-arginine and quinacrine, also suggests that xanthine oxidase activation, the generation of superoxide radical, and nitrix oxide, as well as phospholipase A2 stimulation are responsible for neuron injury (i.e. LDH release). All the tested prostaglandins, except PGF2 alpha-methylester, afforded significant protection at concentrations between 0.1 and 10 microM. The order of potency of the prostanoids was: PGF2 alpha = PGE2 > Carba-TXA2 > PGE1 > PGD2 > PGI2 = Carba-PGI2 > 6-Keto-PGF1 alpha. Additional experiments showed that prostaglandins did not compete for the NMDA binding site and that they did not inhibit free radical-related membrane damage.(ABSTRACT TRUNCATED AT 250 WORDS)
Infection and Immunity | 2005
Elisabeth Billard; Chantal Cazevieille; Jacques Dornand; Antoine Gross
ABSTRACT Bacteria from the Brucella genus are able to survive and proliferate within macrophages. Because they are phylogenetically closely related to macrophages, myeloid dendritic cells (DCs) constitute potential targets for Brucella bacteria. Here we report that DCs display a great susceptibility to Brucella infection. Therefore, DCs might serve as a reservoir and be important for the development of Brucella bacteria within their host.
Brain | 2012
Emmanuelle Sarzi; Claire Angebault; Marie Seveno; Naïg Gueguen; Benjamin Chaix; Guy Bielicki; Nathalie Boddaert; Anne-Laure Mausset-Bonnefont; Chantal Cazevieille; Valérie Rigau; Jean-Pierre Renou; Jing Wang; Cécile Delettre; Philippe Brabet; Jean-Luc Puel; Christian P. Hamel; Pascal Reynier; Guy Lenaers
Dominant optic atrophy is a rare inherited optic nerve degeneration caused by mutations in the mitochondrial fusion gene OPA1. Recently, the clinical spectrum of dominant optic atrophy has been extended to frequent syndromic forms, exhibiting various degrees of neurological and muscle impairments frequently found in mitochondrial diseases. Although characterized by a specific loss of retinal ganglion cells, the pathophysiology of dominant optic atrophy is still poorly understood. We generated an Opa1 mouse model carrying the recurrent Opa1(delTTAG) mutation, which is found in 30% of all patients with dominant optic atrophy. We show that this mouse displays a multi-systemic poly-degenerative phenotype, with a presentation associating signs of visual failure, deafness, encephalomyopathy, peripheral neuropathy, ataxia and cardiomyopathy. Moreover, we found premature age-related axonal and myelin degenerations, increased autophagy and mitophagy and mitochondrial supercomplex instability preceding degeneration and cell death. Thus, these results support the concept that Opa1 protects against neuronal degeneration and opens new perspectives for the exploration and the treatment of mitochondrial diseases.
Neuroscience Letters | 1995
Nathalie Dutrait; Marcel Culcasi; Chantal Cazevieille; Sylvia Pietri; Paul Tordo; Claude Bonne; Agnès Muller
Cultured rat retinal neurons exposed to kainate produced free radicals, as demonstrated by electron spin resonance (ESR) spin trapping using the nitrone 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and the generation of DMPO hydroxyl adduct (DMPO-OH). This DMPO-OH production was abolished by EGTA, nitro-arginine and oxypurinol, suggesting that it was dependent on Ca2+ influx and subsequent activation of nitric oxide synthase and xanthine oxidase. Moreover, kainate induced a receptor-mediated Ca2+ influx and neuronal injury assessed by lactate dehydrogenase release. Neuroprotection afforded by nitro-arginine and oxypurinol shows that calcium-dependent free radical production plays a major role in kainate retinal toxicity.
Neuroscience Letters | 1993
Chantal Cazevieille; A. Muller; Claude Bonne
Arachidonic acid and its metabolites are released in brain extracellular fluids as a result of ischemia and may participate in either damaging or protecting neural tissues. This study investigates the neuroprotective effect of prostacyclin (PGI2) on hypoxia (5 h)/reoxygenation (3 h) and on the excitotoxic neurotransmitter, glutamate (10 microM), in rat cortical neuron cultures. At microM concentrations, PGI2 inhibits lactate dehydrogenase release, a cell-injury marker. These results, showing a direct cytoprotective effect of PGI2 on brain cells, reinforce its beneficial properties on vessels and circulating cells in cerebral ischemia.
Nucleic Acids Research | 2012
Manuella Bouttier; Anne Saumet; Marion Peter; Valérie Courgnaud; Ute Schmidt; Chantal Cazevieille; Edouard Bertrand; Charles-Henri Lecellier
Cellular micro(mi)RNAs are able to recognize viral RNAs through imperfect micro-homologies. Similar to the miRNA-mediated repression of cellular translation, this recognition is thought to tether the RNAi machinery, in particular Argonaute 2 (AGO2) on viral messengers and eventually to modulate virus replication. Here, we unveil another pathway by which AGO2 can interact with retroviral mRNAs. We show that AGO2 interacts with the retroviral Group Specific Antigen (GAG) core proteins and preferentially binds unspliced RNAs through the RNA packaging sequences without affecting RNA stability or eliciting translation repression. Using RNAi experiments, we provide evidences that these interactions, observed with both the human immunodeficiency virus 1 (HIV-1) and the primate foamy virus 1 (PFV-1), are required for retroviral replication. Taken together, our results place AGO2 at the core of the retroviral life cycle and reveal original AGO2 functions that are not related to miRNAs and translation repression.
Pediatric Research | 2007
Vasiliki Kalatzis; Nicolas Serratrice; Claire Hippert; Olivier Payet; Carl Arndt; Chantal Cazevieille; Tangui Maurice; Christian P. Hamel; François Malecaze; Corinne Antignac; Agnès Muller; Eric J. Kremer
Cystinosis is a lysosomal storage disorder characterized by abnormal accumulation of cystine, which forms crystals at high concentrations. The causative gene CTNS encodes cystinosin, the lysosomal cystine transporter. The eye is one of the first organs affected (corneal lesions and photophobia in the first and visual impairment in the second decade of life). We characterized the ocular anomalies of Ctns−/− mice to determine whether they mimic those of patients. The most dramatic cystine accumulation was seen in the iris, ciliary body, and cornea of Ctns−/− mice. Consistently, Ctns−/− mice had a low intraocular pressure (IOP) and seemed mildly photophobic. Retinal cystine levels were elevated but increased less dramatically with age. Consistently, the retina was intact and electroretinogram (ERG) profiles were normal in mice younger than 19 mo; beyond this age, retinal crystals and lesions appeared. Finally, the lens contained the lowest cystine levels and crystals were not seen. The temporospatial pattern of cystine accumulation in Ctns−/− mice parallels that of patients and validates the mice as a model for the ocular anomalies of cystinosis. This work is a prerequisite step to the testing of novel ocular cystine-depleting therapies.
PLOS ONE | 2012
Karim Chekroud; Laurent Guillou; Stéphane Grégoire; Gilles Ducharme; Emilie Brun; Chantal Cazevieille; Lionel Bretillon; Christian P. Hamel; Philippe Brabet; Marie O. Pequignot
FATP1 is involved in lipid transport into cells and in intracellular lipid metabolism. We showed previously that this protein interacts with and inhibits the limiting-step isomerase of the visual cycle RPE65. Here, we aimed to analyze the effect of Fatp1-deficiency in vivo on the visual cycle, structure and function, and on retinal aging. Among the Fatp family members, we observed that only Fatp1 and 4 are expressed in the control retina, in both the neuroretina and the retinal pigment epithelium. In the neuroretina, Fatp1 is mostly expressed in photoreceptors. In young adult Fatp1−/− mice, Fatp4 expression was unchanged in retinal pigment epithelium and reduced two-fold in the neuroretina as compared to Fatp1+/+ mice. The Fatp1−/− mice had a preserved retinal structure but a decreased electroretinogram response to light. These mice also displayed a delayed recovery of the b-wave amplitude after bleaching, however, visual cycle speed was unchanged, and both retinal pigment epithelium and photoreceptors presented the same fatty acid pattern compared to controls. In 2 year-old Fatp1−/− mice, transmission electron microscopy studies showed specific abnormalities in the retinas comprising choroid vascularization anomalies and thickening of the Bruch membrane with material deposits, and sometimes local disorganization of the photoreceptor outer segments. These anomalies lead us to speculate that the absence of FATP1 accelerates the aging process.
PLOS ONE | 2017
Nathalie Gayrard; Alain Ficheux; Flore Duranton; Caroline Guzman; Ilan Szwarc; Fernando Vetromile; Chantal Cazevieille; Philippe Brunet; Marie-Françoise Servel; Àngel Argilés; Moglie Le Quintrec
Introduction Recent randomised controlled trials suggest that on-line hemodiafiltration (OL-HDF) improves survival, provided that it reaches high convective volumes. However, there is scant information on the feasibility and the consequences of modifying convection volumes in clinics. Methods Twelve stable dialysis patients were treated with high-flux 1.8 m2 polysulphone dialyzers and 4 levels of convection flows (QUF) based on GKD-UF monitoring of the system, for 1 week each. The consequences on dialysis delivery (transmembrane pressure (TMP), number of alarms, % of achieved prescribed convection) and efficacy (mass removal of low and high molecular weight compounds) were analysed. Results TMP increased exponentially with QUF (p<0.001 for N >56,000 monitoring values). Beyond 21 L/session, this resulted into frequent TMP alarms requiring nursing staff interventions (mean ± SEM: 10.3 ± 2.2 alarms per session, p<0.001 compared to lower convection volumes). Optimal convection volumes as assessed by GKD-UF-max were 20.6 ± 0.4 L/session, whilst 4 supplementary litres were obtained in the maximum situation (24.5 ± 0.6 L/session) but the proportion of sessions achieving the prescribed convection volume decreased from 94% to only 33% (p<0.001). Convection increased high molecular weight compound removal and shifted the membrane cut-off towards the higher molecular weight range. Conclusions Reaching high convection volumes as recommended by the recent RCTs (> 20L) is feasible by setting an HDF system at its optimal conditions based upon the GKD-UF monitoring. Prescribing higher convection volumes resulted in instability of the system, provoked alarms, was bothersome for the nursing staff and the patients, rarely achieved the prescribed convection volumes and increased removal of high molecular weight compounds, notably albumin.
The Journal of Comparative Neurology | 2015
Maria Morell; Marc Lenoir; Robert E. Shadwick; Thierry Jauniaux; Willy Dabin; Lineke Begeman; Marisa Ferreira; Iranzu Maestre; Eduard Degollada; Gema Hernandez-Milian; Chantal Cazevieille; José-Manuel Fortuño; Wayne Vogl; Jean-Luc Puel; Michel André
The morphological study of the Odontocete organ of Corti, together with possible alterations associated with damage from sound exposure, represents a key conservation approach to assess the effects of acoustic pollution on marine ecosystems. By collaborating with stranding networks from several European countries, 150 ears from 13 species of Odontocetes were collected and analyzed by scanning (SEM) and transmission (TEM) electron microscopy. Based on our analyses, we first describe and compare Odontocete cochlear structures and then propose a diagnostic method to identify inner ear alterations in stranded individuals. The two species analyzed by TEM (Phocoena phocoena and Stenella coeruleoalba) showed morphological characteristics in the lower basal turn of high‐frequency hearing species. Among other striking features, outer hair cell bodies were extremely small and were strongly attached to Deiters cells. Such morphological characteristics, shared with horseshoe bats, suggest that there has been convergent evolution of sound reception mechanisms among echolocating species. Despite possible autolytic artifacts due to technical and experimental constraints, the SEM analysis allowed us to detect the presence of scarring processes resulting from the disappearance of outer hair cells from the epithelium. In addition, in contrast to the rapid decomposition process of the sensory epithelium after death (especially of the inner hair cells), the tectorial membrane appeared to be more resistant to postmortem autolysis effects. Analysis of the stereocilia imprint pattern at the undersurface of the tectorial membrane may provide a way to detect possible ultrastructural alterations of the hair cell stereocilia by mirroring them on the tectorial membrane. J. Comp. Neurol. 523:431–448, 2015.