Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chantal Loirat is active.

Publication


Featured researches published by Chantal Loirat.


The New England Journal of Medicine | 2013

Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome

Christophe Legendre; Christoph Licht; Petra Muus; Laurence Greenbaum; Sunil Babu; C. Bedrosian; C. Bingham; David J. Cohen; Y. Delmas; Kenneth W. Douglas; Frank Eitner; T. Feldkamp; Denis Fouque; Richard R. Furman; Osama Gaber; Maria Herthelius; Maryvonne Hourmant; Diana Karpman; Yvon Lebranchu; C. Mariat; Jan Menne; B. Moulin; J. Nurnberger; M. Ogawa; Giuseppe Remuzzi; T. Richard; R. Sberro-Soussan; B. Severino; Neil S. Sheerin; Antonella Trivelli

BACKGROUND Atypical hemolytic-uremic syndrome is a genetic, life-threatening, chronic disease of complement-mediated thrombotic microangiopathy. Plasma exchange or infusion may transiently maintain normal levels of hematologic measures but does not treat the underlying systemic disease. METHODS We conducted two prospective phase 2 trials in which patients with atypical hemolytic-uremic syndrome who were 12 years of age or older received eculizumab for 26 weeks and during long-term extension phases. Patients with low platelet counts and renal damage (in trial 1) and those with renal damage but no decrease in the platelet count of more than 25% for at least 8 weeks during plasma exchange or infusion (in trial 2) were recruited. The primary end points included a change in the platelet count (in trial 1) and thrombotic microangiopathy event-free status (no decrease in the platelet count of >25%, no plasma exchange or infusion, and no initiation of dialysis) (in trial 2). RESULTS A total of 37 patients (17 in trial 1 and 20 in trial 2) received eculizumab for a median of 64 and 62 weeks, respectively. Eculizumab resulted in increases in the platelet count; in trial 1, the mean increase in the count from baseline to week 26 was 73×10(9) per liter (P<0.001). In trial 2, 80% of the patients had thrombotic microangiopathy event-free status. Eculizumab was associated with significant improvement in all secondary end points, with continuous, time-dependent increases in the estimated glomerular filtration rate (GFR). In trial 1, dialysis was discontinued in 4 of 5 patients. Earlier intervention with eculizumab was associated with significantly greater improvement in the estimated GFR. Eculizumab was also associated with improvement in health-related quality of life. No cumulative toxicity of therapy or serious infection-related adverse events, including meningococcal infections, were observed through the extension period. CONCLUSIONS Eculizumab inhibited complement-mediated thrombotic microangiopathy and was associated with significant time-dependent improvement in renal function in patients with atypical hemolytic-uremic syndrome. (Funded by Alexion Pharmaceuticals; C08-002 ClinicalTrials.gov numbers, NCT00844545 [adults] and NCT00844844 [adolescents]; C08-003 ClinicalTrials.gov numbers, NCT00838513 [adults] and NCT00844428 [adolescents]).


Blood | 2008

Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome

Véronique Frémeaux-Bacchi; Elizabeth C. Miller; M. Kathryn Liszewski; Lisa Strain; Jacques Blouin; Alison L. Brown; Nadeem Moghal; Bernard S. Kaplan; Robert Weiss; Karl Lhotta; Gaurav Kapur; Tej K. Mattoo; Hubert Nivet; William Wong; Sophie Gie; Bruno Hurault De Ligny; Michel Fischbach; Ritu Gupta; Richard E. Hauhart; Vincent Meunier; Chantal Loirat; Marie Agnès Dragon-Durey; Wolf H. Fridman; Bert J. C. Janssen; Timothy H.J. Goodship; John P. Atkinson

Atypical hemolytic uremic syndrome (aHUS) is a disease of complement dysregulation. In approximately 50% of patients, mutations have been described in the genes encoding the complement regulators factor H, MCP, and factor I or the activator factor B. We report here mutations in the central component of the complement cascade, C3, in association with aHUS. We describe 9 novel C3 mutations in 14 aHUS patients with a persistently low serum C3 level. We have demonstrated that 5 of these mutations are gain-of-function and 2 are inactivating. This establishes C3 as a susceptibility factor for aHUS.


Orphanet Journal of Rare Diseases | 2011

Atypical hemolytic uremic syndrome

Chantal Loirat; Véronique Frémeaux-Bacchi

Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently, without unquestionable demonstration of efficiency. There is a high risk of post-transplant recurrence, except in MCP-HUS. Case reports and two phase II trials show an impressive efficacy of the complement C5 blocker eculizumab, suggesting it will be the next standard of care. Except for patients treated by intensive plasmatherapy or eculizumab, the worst prognosis is in factor H-HUS, as mortality can reach 20% and 50% of survivors do not recover renal function. Half of factor I-HUS progress to end-stage renal failure. Conversely, most patients with MCP-HUS have preserved renal function. Anti-factor H antibodies-HUS has favourable outcome if treated early.


Journal of The American Society of Nephrology | 2004

Heterozygous and Homozygous Factor H Deficiencies Associated with Hemolytic Uremic Syndrome or Membranoproliferative Glomerulonephritis: Report and Genetic Analysis of 16 Cases

Marie-Agnès Dragon-Durey; Véronique Frémeaux-Bacchi; Chantal Loirat; Jacques Blouin; Patrick Niaudet; Georges Deschênes; Paul Coppo; Wolf H. Fridman; Laurence Weiss

Factor H (FH) is the major regulatory protein of the complement alternative pathway, with a structure consisting of a tandem array of 20 homologous units, called short consensus repeats (SCR). Reported are 16 FH-deficient patients. Among six patients with homozygous deficiency, four presented with membranoproliferative glomerulonephritis, and two with atypical hemolytic uremic syndrome (HUS). The ten other patients had heterozygous FH deficiency and developed atypical HUS. HUS onset occurred from birth to midadulthood, and disease progression was variable. Four children with homozygous or heterozygous FH deficiency and HUS underwent renal transplantation, which was successful in three but failed as a result of recurrence of HUS in one patient. All but one patient exhibited alternative pathway-mediated complement consumption, with no detectable FH antigenic levels or with 50% immunochemical or functional FH levels in the case of complete or partial deficiency, respectively. The molecular mechanisms of the deficiency were documented in all cases by exon-specific sequencing analysis. These mechanisms included nucleotide substitutions, insertion, or deletion located in SCR 2, 7, 11, 13, 15, and 20, leading to an amino acid substitution or to a stop codon. This report emphasizes the variability in the clinical progression of kidney diseases associated with FH deficiencies. Genetic analysis reveals the molecular abnormalities associated with FH deficiencies to be polymorphous.


Nature Reviews Nephrology | 2012

Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies

Julien Zuber; Fadi Fakhouri; Lubka T. Roumenina; Chantal Loirat; Véronique Frémeaux-Bacchi

In the past decade, a large body of evidence has accumulated in support of the critical role of dysregulation of the alternative complement pathway in atypical haemolytic uraemic syndrome (aHUS) and C3 glomerulopathies. These findings have paved the way for innovative therapeutic strategies based on complement blockade, and eculizumab, a monoclonal antibody targeting the human complement component 5, is now widely used to treat aHUS. In this article, we review 28 case reports and preliminary data from 37 patients enrolled in prospective trials of eculizumab treatment for episodes of aHUS involving either native or transplanted kidneys. Eculizumab may be considered as an optimal first-line therapy when the diagnosis of aHUS is unequivocal and this treatment has the potential to rescue renal function when administered early after onset of the disease. However, a number of important issues require further study, including the appropriate duration of treatment according to an individuals genetic background and medical history, the optimal strategy to prevent post-transplantation recurrence of aHUS and a cost–efficacy analysis. Data regarding the efficacy of eculizumab in the control of C3 glomerulopathies are more limited and less clear, but several observations suggest that eculizumab may act on the most inflammatory forms of this disorder.


Journal of The American Society of Nephrology | 2007

Differential Impact of Complement Mutations on Clinical Characteristics in Atypical Hemolytic Uremic Syndrome

Anne-Laure Sellier-Leclerc; Véronique Frémeaux-Bacchi; Marie-Agnès Dragon-Durey; Marie-Alice Macher; Patrick Niaudet; Geneviève Guest; Bernard Boudailliez; François Bouissou; Georges Deschênes; Sophie Gie; Michel Tsimaratos; Michel Fischbach; Denis Morin; Hubert Nivet; Corinne Alberti; Chantal Loirat

Mutations in factor H (CFH), factor I (IF), and membrane cofactor protein (MCP) genes have been described as risk factors for atypical hemolytic uremic syndrome (aHUS). This study analyzed the impact of complement mutations on the outcome of 46 children with aHUS. A total of 52% of patients had mutations in one or two of known susceptibility factors (22, 13, and 15% of patients with CFH, IF, or MCP mutations, respectively; 2% with CFH+IF mutations). Age <3 mo at onset seems to be characteristic of CFH and IF mutation-associated aHUS. The most severe prognosis was in the CFH mutation group, 60% of whom reached ESRD or died within <1 yr. Only 30% of CFH mutations were localized in SCR20. MCP mutation-associated HUS has a relapsing course, but none of the children reached ESRD at 1 yr. Half of patients with IF mutation had a rapid evolution to ESRD, and half recovered. Plasmatherapy seemed to have a beneficial effect in one third of patients from all groups except for the MCP mutation group. Only eight (33%) of 24 kidney transplantations that were performed in 15 patients were successful. Graft failures were due to early graft thrombosis (50%) or HUS recurrence. In conclusion, outcome of HUS in patients with CFH mutation is catastrophic, and posttransplantation outcome is poor in all groups except for the MCP mutation group. New therapies are urgently needed, and further research should elucidate the unexplained HUS group.


Clinical Journal of The American Society of Nephrology | 2013

Genetics and Outcome of Atypical Hemolytic Uremic Syndrome: A Nationwide French Series Comparing Children and Adults

Véronique Frémeaux-Bacchi; Fadi Fakhouri; Arnaud Garnier; Frank Bienaimé; Marie-Agnès Dragon-Durey; Stéphanie Ngo; Bruno Moulin; Aude Servais; François Provôt; Lionel Rostaing; S. Burtey; Patrick Niaudet; Georges Deschênes; Yvon Lebranchu; Julien Zuber; Chantal Loirat

BACKGROUND AND OBJECTIVES Atypical hemolytic uremic syndrome (aHUS) is a rare complement-mediated kidney disease that was first recognized in children but also affects adults. This study assessed the disease presentation and outcome in a nationwide cohort of patients with aHUS according to the age at onset and the underlying complement abnormalities. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A total of 214 patients with aHUS were enrolled between 2000 and 2008 and screened for mutations in the six susceptibility factors for aHUS and for anti-factor H antibodies. RESULTS Onset of aHUS occurred as frequently during adulthood (58.4%) as during childhood (41.6%). The percentages of patients who developed the disease were 23%, 40%, 70%, and 98% by age 2, 18, 40, and 60 years, respectively. Mortality was higher in children than in adults (6.7% versus 0.8% at 1 year) (P=0.02), but progression to ESRD after the first aHUS episode was more frequent in adults (46% versus 16%; P<0.001). Sixty-one percent of patients had mutations in their complement genes. The renal outcome was not significantly different in adults regardless of genetic background. Only membrane cofactor protein (MCP) and undetermined aHUS were less severe in children than adults. The frequency of relapse after 1 year was 92% in children with MCP-associated HUS and approximately 30% in all other subgroups. CONCLUSION Mortality rate was higher in children than adults with aHUS, but renal prognosis was worse in adults than children. In children, the prognosis strongly depends on the genetic background.


Nature Genetics | 2013

Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome

Mathieu Lemaire; Véronique Frémeaux-Bacchi; Franz Schaefer; Murim Choi; Wai Ho Tang; Moglie Le Quintrec; Fadi Fakhouri; Sophie Taque; François Nobili; Frank Martinez; Weizhen Ji; John D. Overton; Shrikant Mane; Gudrun Nürnberg; Janine Altmüller; Holger Thiele; Denis Morin; Georges Deschênes; Véronique Baudouin; Brigitte Llanas; Laure Collard; Mohammed Abdul Majid; Eva Šimková; Peter Nürnberg; Nathalie Rioux-Leclerc; Gilbert W. Moeckel; Marie Claire Gubler; John Hwa; Chantal Loirat; Richard P. Lifton

Pathologic thrombosis is a major cause of mortality. Hemolytic-uremic syndrome (HUS) features episodes of small-vessel thrombosis resulting in microangiopathic hemolytic anemia, thrombocytopenia and renal failure. Atypical HUS (aHUS) can result from genetic or autoimmune factors that lead to pathologic complement cascade activation. Using exome sequencing, we identified recessive mutations in DGKE (encoding diacylglycerol kinase ɛ) that co-segregated with aHUS in nine unrelated kindreds, defining a distinctive Mendelian disease. Affected individuals present with aHUS before age 1 year, have persistent hypertension, hematuria and proteinuria (sometimes in the nephrotic range), and develop chronic kidney disease with age. DGKE is found in endothelium, platelets and podocytes. Arachidonic acid–containing diacylglycerols (DAG) activate protein kinase C (PKC), which promotes thrombosis, and DGKE normally inactivates DAG signaling. We infer that loss of DGKE function results in a prothrombotic state. These findings identify a new mechanism of pathologic thrombosis and kidney failure and have immediate implications for treating individuals with aHUS.


Pediatric Nephrology | 2009

Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome.

Gema Ariceta; Nesrin Besbas; Sally Johnson; Diana Karpman; Daniel Landau; Christoph Licht; Chantal Loirat; Carmine Pecoraro; C. Mark Taylor; Nicole C. A. J. van de Kar; Johan VandeWalle; Lothar Bernd Zimmerhackl

This guideline for the investigation and initial treatment of atypical hemolytic uremic syndrome (HUS) is intended to offer an approach based on opinion, as evidence is lacking. It builds on the current ability to identify the etiology of specific diagnostic sub-groups of HUS. HUS in children is mostly due to infection, enterohemorrhagic Escherichia coli (EHEC), Shigella dysenteriae type 1 in some geographic regions, and invasive Streptococcus pneumoniae. These sub-groups are relatively straightforward to diagnose. Their management, which is outside the remit of this guideline, is related to control of infection where that is necessary and supportive measures for the anemia and acute renal failure. A thorough investigation of the remainder of childhood HUS cases, commonly referred to as “atypical” HUS, will reveal a risk factor for the syndrome in approximately 60% of cases. Disorders of complement regulation are, numerically, the most important. The outcome for children with atypical HUS is poor, and, because of the rarity of these disorders, clinical experience is scanty. Some cases of complement dysfunction appear to respond to plasma therapy. The therapeutic part of this guideline is the consensus of the contributing authors and is based on limited information from uncontrolled studies. The guideline proposes urgent and empirical plasmapheresis replacement with whole plasma fraction for the first month after diagnosis. This should only be undertaken in specialized pediatric nephrology centers where appropriate medical and nursing skills are available. The guideline includes defined terminology and audit points so that the early clinical effectiveness of the strategy can be evaluated.


Journal of The American Society of Nephrology | 2006

Genetic and Functional Analyses of Membrane Cofactor Protein (CD46) Mutations in Atypical Hemolytic Uremic Syndrome

Véronique Frémeaux-Bacchi; Elizabeth A. Moulton; David J. Kavanagh; Marie-Agnès Dragon-Durey; Jacques Blouin; Amy A. Caudy; Nadia Arzouk; Roxanna Cleper; Maud Francois; Geneviève Guest; Jacques Pourrat; Roland Seligman; Wolf H. Fridman; Chantal Loirat; John P. Atkinson

Hemolytic uremic syndrome (HUS) is characterized by the triad of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. The non-Shiga toxin-associated HUS (atypical HUS [aHUS]) has been shown to be a disease of complement dysregulation. Mutations in the plasma complement regulators factor H and factor I and the widely expressed membrane cofactor protein (MCP; CD46) have been described recently. This study looked for MCP mutations in a panel of 120 patients with aHUS. In this cohort, approximately 10% of patients with aHUS (11 patients; nine pedigrees) have mutations in MCP. The onset typically was in early childhood. Unlike patients with factor I or factor H mutations, most of the patients do not develop end-stage renal failure after aHUS. The majority of patients have a mutation that causes reduced MCP surface expression. A small proportion expressed normal levels of a dysfunctional protein. As in other studies, incomplete penetrance is shown, suggesting that MCP is a predisposing factor rather than a direct causal factor. The low level of recurrence of aHUS in transplantation in patients with MCP mutations is confirmed, and the first MCP null individuals are described. This study confirms the association between MCP deficiency and aHUS and further establishes that a deficiency in complement regulation, specifically cofactor activity, predisposes to severe thrombotic microangiopathy in the renal vasculature.

Collaboration


Dive into the Chantal Loirat's collaboration.

Top Co-Authors

Avatar

Georges Deschênes

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Patrick Niaudet

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolf H. Fridman

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge