Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chantal Reusken is active.

Publication


Featured researches published by Chantal Reusken.


Lancet Infectious Diseases | 2013

Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study

Chantal Reusken; Bart L. Haagmans; Marcel A. Müller; Carlos Gutiérrez; Gert Jan Godeke; Benjamin Meyer; Doreen Muth; V. Stalin Raj; Laura de Vries; Victor Max Corman; Jan Felix Drexler; Saskia L. Smits; Yasmin E. El Tahir; Rita de Sousa; Janko van Beek; Norbert Nowotny; Kees van Maanen; Ezequiel Hidalgo-Hermoso; Berend Jan Bosch; Peter J. M. Rottier; Albert D. M. E. Osterhaus; Christian Gortázar-Schmidt; Christian Drosten; Marion Koopmans

Summary Background A new betacoronavirus—Middle East respiratory syndrome coronavirus (MERS-CoV)—has been identified in patients with severe acute respiratory infection. Although related viruses infect bats, molecular clock analyses have been unable to identify direct ancestors of MERS-CoV. Anecdotal exposure histories suggest that patients had been in contact with dromedary camels or goats. We investigated possible animal reservoirs of MERS-CoV by assessing specific serum antibodies in livestock. Methods We took sera from animals in the Middle East (Oman) and from elsewhere (Spain, Netherlands, Chile). Cattle (n=80), sheep (n=40), goats (n=40), dromedary camels (n=155), and various other camelid species (n=34) were tested for specific serum IgG by protein microarray using the receptor-binding S1 subunits of spike proteins of MERS-CoV, severe acute respiratory syndrome coronavirus, and human coronavirus OC43. Results were confirmed by virus neutralisation tests for MERS-CoV and bovine coronavirus. Findings 50 of 50 (100%) sera from Omani camels and 15 of 105 (14%) from Spanish camels had protein-specific antibodies against MERS-CoV spike. Sera from European sheep, goats, cattle, and other camelids had no such antibodies. MERS-CoV neutralising antibody titres varied between 1/320 and 1/2560 for the Omani camel sera and between 1/20 and 1/320 for the Spanish camel sera. There was no evidence for cross-neutralisation by bovine coronavirus antibodies. Interpretation MERS-CoV or a related virus has infected camel populations. Both titres and seroprevalences in sera from different locations in Oman suggest widespread infection. Funding European Union, European Centre For Disease Prevention and Control, Deutsche Forschungsgemeinschaft.


Nature Communications | 2012

Bats host major mammalian paramyxoviruses

Drexler Jf; Victor Max Corman; Marcel A. Müller; Gaël D. Maganga; Peter Vallo; Tabea Binger; Florian Gloza-Rausch; Veronika M. Cottontail; Andrea Rasche; Stoian Yordanov; Antje Seebens; Mirjam Knörnschild; Samuel Oppong; Adu Sarkodie Y; Pongombo C; Alexander N. Lukashev; Jonas Schmidt-Chanasit; Andreas Stöcker; Aroldo José Borges Carneiro; Stephanie Erbar; Andrea Maisner; Florian Fronhoffs; Reinhard Buettner; Elisabeth K. V. Kalko; Thomas Kruppa; Carlos Roberto Franke; René Kallies; Yandoko Er; Georg Herrler; Chantal Reusken

The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data. Supplementary information The online version of this article (doi:10.1038/ncomms1796) contains supplementary material, which is available to authorized users.


Lancet Infectious Diseases | 2014

Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation

Bart L. Haagmans; Said H S Al Dhahiry; Chantal Reusken; V. Stalin Raj; Monica Galiano; Richard Myers; Gert-Jan Godeke; Marcel Jonges; Elmoubasher Farag; Ayman Diab; Hazem Ghobashy; Farhoud Alhajri; Mohamed Al-Thani; Salih Ali Al-Marri; Hamad Eid Al Romaihi; Abdullatif Al Khal; Alison Bermingham; Albert D. M. E. Osterhaus; Mohd M. AlHajri; Marion Koopmans

Summary Background Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe lower respiratory tract infection in people. Previous studies suggested dromedary camels were a reservoir for this virus. We tested for the presence of MERS-CoV in dromedary camels from a farm in Qatar linked to two human cases of the infection in October, 2013. Methods We took nose swabs, rectal swabs, and blood samples from all camels on the Qatari farm. We tested swabs with RT-PCR, with amplification targeting the E gene (upE), nucleocapsid (N) gene, and open reading frame (ORF) 1a. PCR positive samples were tested by different MERS-CoV specific PCRs and obtained sequences were used for phylogentic analysis together with sequences from the linked human cases and other human cases. We tested serum samples from the camels for IgG immunofluorescence assay, protein microarray, and virus neutralisation assay. Findings We obtained samples from 14 camels on Oct 17, 2013. We detected MERS-CoV in nose swabs from three camels by three independent RT-PCRs and sequencing. The nucleotide sequence of an ORF1a fragment (940 nucleotides) and a 4·2 kb concatenated fragment were very similar to the MERS-CoV from two human cases on the same farm and a MERS-CoV isolate from Hafr-Al-Batin. Eight additional camel nose swabs were positive on one or more RT-PCRs, but could not be confirmed by sequencing. All camels had MERS-CoV spike-binding antibodies that correlated well with the presence of neutralising antibodies to MERS-CoV. Interpretation Our study provides virological confirmation of MERS-CoV in camels and suggests a recent outbreak affecting both human beings and camels. We cannot conclude whether the people on the farm were infected by the camels or vice versa, or if a third source was responsible. Funding European Union projects EMPERIE (contract number 223498), ANTIGONE (contract number 278976), and the VIRGO consortium.


Emerging Infectious Diseases | 2013

Human Betacoronavirus 2c EMC/2012–related Viruses in Bats, Ghana and Europe

Augustina Annan; Heather J. Baldwin; Victor Max Corman; Stefan M. Klose; Michael Owusu; Evans Ewald Nkrumah; Ebenezer K. Badu; Priscilla Anti; Olivia Agbenyega; Benjamin Meyer; Samuel Oppong; Yaw Adu Sarkodie; Elisabeth K. V. Kalko; Peter H.C. Lina; Elena V. Godlevska; Chantal Reusken; Antje Seebens; Florian Gloza-Rausch; Peter Vallo; Marco Tschapka; Christian Drosten; Jan Felix Drexler

We screened fecal specimens of 4,758 bats from Ghana and 272 bats from 4 European countries for betacoronaviruses. Viruses related to the novel human betacoronavirus EMC/2012 were detected in 46 (24.9%) of 185 Nycteris bats and 40 (14.7%) of 272 Pipistrellus bats. Their genetic relatedness indicated EMC/2012 originated from bats.


Emerging Infectious Diseases | 2014

Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013.

Benjamin H Meyer; Marcel A. Müller; Victor Max Corman; Chantal Reusken; Daniel Ritz; Gert-Jan Godeke; Erik Lattwein; Stephan Kallies; Artem Siemens; Janko van Beek; Jan Felix Drexler; Doreen Muth; Berend Jan Bosch; Ulrich Wernery; Marion Koopmans; Renate Wernery; Christian Drosten

Camels were infected with this virus >10 years before the first human cases.


Eurosurveillance | 2013

Middle East Respiratory Syndrome coronavirus (MERS- CoV) serology in major livestock species in an affected region in Jordan, June to September 2013

Chantal Reusken; Mustafa M. Ababneh; V S Raj; Benjamin Meyer; Abdulhakeem Eljarah; S Abutarbush; Gert-Jan Godeke; Theo M. Bestebroer; I Zutt; Marcel A. Müller; Berend Jan Bosch; Peter J. M. Rottier; Albert D. M. E. Osterhaus; Christian Drosten; Bart L. Haagmans; Marion Koopmans

Between June and September 2013, sera from 11 dromedary camels, 150 goats, 126 sheep and 91 cows were collected in Jordan, where the first human Middle-East respiratory syndrome (MERS) cluster appeared in 2012. All sera were tested for MERS-coronavirus (MERS-CoV) specific antibodies by protein microarray with confirmation by virus neutralisation. Neutralising antibodies were found in all camel sera while sera from goats and cattle tested negative. Although six sheep sera reacted with MERS-CoV antigen, neutralising antibodies were not detected.


PLOS Pathogens | 2013

Evidence for novel hepaciviruses in rodents.

Jan Felix Drexler; Victor Max Corman; Marcel A. Müller; Alexander N. Lukashev; Anatoly P. Gmyl; Bruno Coutard; Alexander C. Adam; Daniel Ritz; Lonneke M. Leijten; Debby van Riel; René Kallies; Stefan M. Klose; Florian Gloza-Rausch; Tabea Binger; Augustina Annan; Yaw Adu-Sarkodie; Samuel Oppong; Mathieu Bourgarel; Daniel Rupp; Bernd Hoffmann; Mathias Schlegel; Beate M. Kümmerer; Detlev H. Krüger; Jonas Schmidt-Chanasit; Alvaro Aguilar Setién; Veronika M. Cottontail; Thiravat Hemachudha; Supaporn Wacharapluesadee; Klaus Osterrieder; Ralf Bartenschlager

Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species). Three highly divergent rodent hepacivirus clades were detected in 27 (1.8%) of 1,465 European bank voles (Myodes glareolus) and 10 (1.9%) of 518 South African four-striped mice (Rhabdomys pumilio). Bats showed anti-HCV immunoblot reactivities but no virus detection, although the genetic relatedness suggested by the serologic results should have enabled RNA detection using the broadly reactive PCR assays developed for this study. 210 horses and 858 cats and dogs were tested, yielding further horse-associated hepaciviruses but none in dogs or cats. The rodent viruses were equidistant to HCV, exceeding by far the diversity of HCV and the canine/equine hepaciviruses taken together. Five full genomes were sequenced, representing all viral lineages. Salient genome features and distance criteria supported classification of all viruses as hepaciviruses. Quantitative RT-PCR, RNA in-situ hybridisation, and histopathology suggested hepatic tropism with liver inflammation resembling hepatitis C. Recombinant serology for two distinct hepacivirus lineages in 97 bank voles identified seroprevalence rates of 8.3 and 12.4%, respectively. Antibodies in bank vole sera neither cross-reacted with HCV, nor the heterologous bank vole hepacivirus. Co-occurrence of RNA and antibodies was found in 3 of 57 PCR-positive bank vole sera (5.3%). Our data enable new hypotheses regarding HCV evolution and encourage efforts to develop rodent surrogate models for HCV.


Parasites & Vectors | 2009

Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species

Hein Sprong; Peter R. Wielinga; Manoj Fonville; Chantal Reusken; Afke H. Brandenburg; Fred H.M. Borgsteede; C.P.H. Gaasenbeek; Joke van der Giessen

BackgroundHard ticks have been identified as important vectors of rickettsiae causing the spotted fever syndrome. Tick-borne rickettsiae are considered to be emerging, but only limited data are available about their presence in Western Europe, their natural life cycle and their reservoir hosts. Ixodes ricinus, the most prevalent tick species, were collected and tested from different vegetation types and from potential reservoir hosts. In one biotope area, the annual and seasonal variability of rickettsiae infections of the different tick stages were determined for 9 years.ResultsThe DNA of the human pathogen R. conorii as well as R. helvetica, R. sp. IRS and R. bellii-like were found. Unexpectedly, the DNA of the highly pathogenic R. typhi and R. prowazekii and 4 other uncharacterized Rickettsia spp. related to the typhus group were also detected in I. ricinus. The presence of R. helvetica in fleas isolated from small rodents supported our hypothesis that cross-infection can occur under natural conditions, since R. typhi/prowazekii and R. helvetica as well as their vectors share rodents as reservoir hosts. In one biotope, the infection rate with R. helvetica was ~66% for 9 years, and was comparable between larvae, nymphs, and adults. Larvae caught by flagging generally have not yet taken a blood meal from a vertebrate host. The simplest explanation for the comparable prevalence of R. helvetica between the defined tick stages is, that R. helvetica is vertically transmitted through the next generation with high efficiency. The DNA of R. helvetica was also present in whole blood from mice, deer and wild boar.ConclusionBesides R. helvetica, unexpected rickettsiae are found in I. ricinus ticks. We propose that I. ricinus is a major reservoir host for R. helvetica, and that vertebrate hosts play important roles in the further geographical dispersion of rickettsiae.


Emerging Infectious Diseases | 2014

Geographic Distribution of MERS Coronavirus among Dromedary Camels, Africa

Chantal Reusken; Lilia Messadi; Ashenafi Feyisa; Hussaini Gulak Ularamu; G J Godeke; Agom Danmarwa; Fufa Dawo; Mohamed Jemli; Simenew Keskes Melaku; David Shamaki; Yusuf Woma; Yiltawe Simwal Wungak; Endrias Zewdu Gebremedhin; Ilse Zutt; Berend Jan Bosch; Bart L. Haagmans; Marion Koopmans

We found serologic evidence for the circulation of Middle East respiratory syndrome coronavirus among dromedary camels in Nigeria, Tunisia, and Ethiopia. Circulation of the virus among dromedaries across broad areas of Africa may indicate that this disease is currently underdiagnosed in humans outside the Arabian Peninsula.


BMC Veterinary Research | 2009

The course of hepatitis E virus infection in pigs after contact-infection and intravenous inoculation.

Martijn Bouwknegt; Saskia A. Rutjes; Chantal Reusken; Norbert Stockhofe-Zurwieden; K. Frankena; Mart C.M. de Jong; Ana Maria de Roda Husman; Wim H. M. van der Poel

BackgroundWorldwide, hepatitis E virus (HEV) genotype 3 is observed in pigs and transmission to humans is implied. To be able to estimate public health risks from e.g. contact with pigs or consumption of pork products, the transmission routes and dynamics of infection should be identified. Hence, the course of HEV-infection in naturally infected pigs should be studied.ResultsTo resemble natural transmission, 24 HEV-susceptible pigs were infected either by one-to-one exposure to intravenously inoculated pigs (C1-pigs; n = 10), by one-to-one exposure to contact-infected pigs (C2-pigs: n = 7; C3-pigs: n = 5) or due to an unknown non-intravenous infection route (one C2-pig and one C3-pig). The course of HEV-infection for contact-infected pigs was characterized by: faecal HEV RNA excretion that started at day 7 (95% confidence interval: 5–10) postexposure and lasted 23 (19–28) days; viremia that started after 13 (8–17) days of faecal HEV RNA excretion and lasted 11 (8–13) days; antibody development that was detected after 13 (10–16) days of faecal HEV RNA excretion. The time until onset of faecal HEV RNA excretion and onset of viremia was significantly shorter for iv-pigs compared to contact-infected pigs, whereas the duration of faecal HEV RNA excretion was significantly longer. At 28 days postinfection HEV RNA was detected less frequently in organs of contact-infected pigs compared to iv-pigs. For contact-infected pigs, HEV RNA was detected in 20 of 39 muscle samples that were proxies for pork at retail and in 4 of 7 urine samples.ConclusionThe course of infection differed between infection routes, suggesting that contact-infection could be a better model for natural transmission than iv inoculation. Urine and meat were identified as possible HEV-sources for pig-to-pig and pig-to-human HEV transmission.

Collaboration


Dive into the Chantal Reusken's collaboration.

Top Co-Authors

Avatar

Marion Koopmans

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Bart L. Haagmans

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Suzan D. Pas

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Natalie Cleton

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jan Felix Drexler

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jonas Schmidt-Chanasit

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge