Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chantal Soscia is active.

Publication


Featured researches published by Chantal Soscia.


Journal of Bacteriology | 2005

Quorum Sensing Negatively Controls Type III Secretion Regulon Expression in Pseudomonas aeruginosa PAO1

Sophie Bleves; Chantal Soscia; Patricia Nogueira-Orlandi; Andrée Lazdunski; Alain Filloux

A systematic analysis of the type III secretion (T3S) genes of Pseudomonas aeruginosa strain PAO1 revealed that they are under quorum-sensing control. This observation was supported by the down-regulation of the T3S regulon in the presence of RhlR-C4HSL and the corresponding advanced secretion of ExoS in a rhlI mutant.


Journal of Biological Chemistry | 2012

The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells.

Thibault G. Sana; Abderrahman Hachani; Iwona Bucior; Chantal Soscia; Steve Garvis; Elise Termine; Joanne N. Engel; Alain Filloux; Sophie Bleves

Background: Three T6SSs are present in P. aeruginosa. H1-T6SS secretes bacteriolytic toxins. Results: H2-T6SS is regulated by quorum sensing and Fur and modulates internalization in epithelial cells through PI3K-Akt host pathway activation. Conclusion: H2-T6SS plays a role in virulence. Significance: In contrast to the anti-prokaryotic H1-T6SS, H2-T6SS targets human cells. Those T6SSs can carry out different functions important in establishing infection. The genome of Pseudomonas aeruginosa PAO1 contains three type VI secretion systems (T6SSs) called H1-, H2-, and H3-T6SS. The H1-T6SS secretes three identified toxins that target other bacteria, providing a fitness advantage for P. aeruginosa, and likely contributes to bacterial pathogenesis in chronic infections. However, no specific substrates or defined roles have been described for the two other systems. Here, we demonstrate that the expression of H2-T6SS genes of strain PAO1 is up-regulated during the transition from exponential to stationary phase growth and regulated by the Las and Rhl quorum sensing systems. In addition, we identify two putative Fur boxes in the promoter region and find that H2-T6SS transcription is negatively regulated by iron. We also show that the H2-T6SS system enhances bacterial uptake into HeLa cells (75% decrease in internalization with a H2-T6SS mutant) and into lung epithelial cells through a phosphatidylinositol 3-kinase-dependent pathway that induces Akt activation in the host cell (50% decrease in Akt phosphorylation). Finally, we show that H2-T6SS plays a role in P. aeruginosa virulence in the worm model. Thus, in contrast to H1-T6SS, H2-T6SS modulates interaction with eukaryotic host cells. Together, T6SS can carry out different functions that may be important in establishing chronic P. aeruginosa infections in the human host.


Journal of Bacteriology | 2007

Cross Talk between Type III Secretion and Flagellar Assembly Systems in Pseudomonas aeruginosa

Chantal Soscia; Abderrahman Hachani; Alain Bernadac; Alain Filloux; Sophie Bleves

Pseudomonas aeruginosa cytotoxicity is linked to a type III secretion system (T3SS) that delivers effectors into the host cell. We show here that a negative cross-control exists between T3SS and flagellar assembly. We observed that, in a strain lacking flagella, T3SS gene expression, effector secretion, and cytotoxicity were increased. Conversely, we revealed that flagellar-gene expression and motility were decreased in a strain overproducing ExsA, the T3SS master regulator. Interestingly, a nonmotile strain lacking the flagellar filament (DeltafliC) presented a hyperefficient T3SS and a nonmotile strain assembling flagella (DeltamotAB) did not. More intriguingly, a strain lacking motCD genes is a flagellated strain with a slight defect in swimming. However, in this strain, T3SS gene expression was up-regulated. These results suggest that flagellar assembly and/or mobility antagonizes the T3SS and that a negative cross talk exists between these two systems. An illustration of this is the visualization by electron microscopy of T3SS needles in a nonmotile P. aeruginosa strain, needles which otherwise are not detected. The molecular basis of the cross talk is complex and remains to be elucidated, but proteins like MotCD might have a crucial role in signaling between the two processes. In addition, we found that the GacA response regulator negatively affects the T3SS. In a gacA mutant, the T3SS effector ExoS is hypersecreted. Strikingly, GacA was previously reported as a positive regulator for motility. Globally, our data document the idea that some virulence factors are coordinately but inversely regulated, depending on the bacterial colonization phase and infection types.


Mbio | 2015

Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network

Thibault G. Sana; Christoph Baumann; Andreas Merdes; Chantal Soscia; Thomas Rattei; Abderrahman Hachani; Cerith Jones; Keiryn L. Bennett; Alain Filloux; Giulio Superti-Furga; Romé Voulhoux; Sophie Bleves

ABSTRACT Invasion of nonphagocytic cells through rearrangement of the actin cytoskeleton is a common immune evasion mechanism used by most intracellular bacteria. However, some pathogens modulate host microtubules as well by a still poorly understood mechanism. In this study, we aim at deciphering the mechanisms by which the opportunistic bacterial pathogen Pseudomonas aeruginosa invades nonphagocytic cells, although it is considered mainly an extracellular bacterium. Using confocal microscopy and immunofluorescence, we show that the evolved VgrG2b effector of P. aeruginosa strain PAO1 is delivered into epithelial cells by a type VI secretion system, called H2-T6SS, involving the VgrG2a component. An in vivo interactome of VgrG2b in host cells allows the identification of microtubule components, including the γ-tubulin ring complex (γTuRC), a multiprotein complex catalyzing microtubule nucleation, as the major host target of VgrG2b. This interaction promotes a microtubule-dependent internalization of the bacterium since colchicine and nocodazole, two microtubule-destabilizing drugs, prevent VgrG2b-mediated P. aeruginosa entry even if the invasion still requires actin. We further validate our findings by demonstrating that the type VI injection step can be bypassed by ectopic production of VgrG2b inside target cells prior to infection. Moreover, such uncoupling between VgrG2b injection and bacterial internalization also reveals that they constitute two independent steps. With VgrG2b, we provide the first example of a bacterial protein interacting with the γTuRC. Our study offers key insight into the mechanism of self-promoting invasion of P. aeruginosa into human cells via a directed and specific effector-host protein interaction. IMPORTANCE Innate immunity and specifically professional phagocytic cells are key determinants in the ability of the host to control P. aeruginosa infection. However, among various virulence strategies, including attack, this opportunistic bacterial pathogen is able to avoid host clearance by triggering its own internalization in nonphagocytic cells. We previously showed that a protein secretion/injection machinery, called the H2 type VI secretion system (H2-T6SS), promotes P. aeruginosa uptake by epithelial cells. Here we investigate which H2-T6SS effector enables P. aeruginosa to enter nonphagocytic cells. We show that VgrG2b is delivered by the H2-T6SS machinery into epithelial cells, where it interacts with microtubules and, more particularly, with the γ-tubulin ring complex (γTuRC) known as the microtubule-nucleating center. This interaction precedes a microtubule- and actin-dependent internalization of P. aeruginosa. We thus discovered an unprecedented target for a bacterial virulence factor since VgrG2b constitutes, to our knowledge, the first example of a bacterial protein interacting with the γTuRC. Innate immunity and specifically professional phagocytic cells are key determinants in the ability of the host to control P. aeruginosa infection. However, among various virulence strategies, including attack, this opportunistic bacterial pathogen is able to avoid host clearance by triggering its own internalization in nonphagocytic cells. We previously showed that a protein secretion/injection machinery, called the H2 type VI secretion system (H2-T6SS), promotes P. aeruginosa uptake by epithelial cells. Here we investigate which H2-T6SS effector enables P. aeruginosa to enter nonphagocytic cells. We show that VgrG2b is delivered by the H2-T6SS machinery into epithelial cells, where it interacts with microtubules and, more particularly, with the γ-tubulin ring complex (γTuRC) known as the microtubule-nucleating center. This interaction precedes a microtubule- and actin-dependent internalization of P. aeruginosa. We thus discovered an unprecedented target for a bacterial virulence factor since VgrG2b constitutes, to our knowledge, the first example of a bacterial protein interacting with the γTuRC.


PLOS ONE | 2013

Divergent Control of Two Type VI Secretion Systems by RpoN in Pseudomonas aeruginosa

Thibault G. Sana; Chantal Soscia; Céline M. Tonglet; Steve Garvis; Sophie Bleves

Three Type VI Secretion System (T6SS) loci called H1- to H3-T6SS coexist in Pseudomonas aeruginosa. H1-T6SS targets prokaryotic cells whereas H2-T6SS mediates interactions with both eukaryotic and prokaryotic host cells. Little is known about the third system, except that it may be connected to H2-T6SS during the host infection. Here we show that H3-T6SS is required for P. aeruginosa PAO1 virulence in the worm model. We demonstrate that the two putative H3-T6SS operons, called “left” and “right”, are coregulated with H2-T6SS by the Las and Rhl Quorum Sensing systems. Interestingly, the RpoN σ54 factor has divergent effects on the three operons. As for many T6SSs, RpoN activates the expression of H3-T6SS left. However, RpoN unexpectedly represses the expression of H3-T6SS right and also H2-T6SS. Sfa2 and Sfa3 are putative enhancer binding proteins encoded on H2-T6SS and H3-T6SS left. In other T6SSs EBPs can act as σ54 activators to promote T6SS transcription. Strikingly, we found that the RpoN effects of H3-T6SS are Sfa-independent while the RpoN mediated repression of H2-T6SS is Sfa2-dependent. This is the first example of RpoN repression of a T6SS being mediated by a T6SS-encoded EBP.


Microbiology | 2011

Role of fimV in type II secretion system-dependent protein secretion of Pseudomonas aeruginosa on solid medium

Gérard Michel; Anthony Aguzzi; Geneviève Ball; Chantal Soscia; Sophie Bleves; Romé Voulhoux

Although classical type II secretion systems (T2SSs) are widely present in Gram-negative bacteria, atypical T2SSs can be found in some species. In Pseudomonas aeruginosa, in addition to the classical T2SS Xcp, it was reported that two genes, xphA and xqhA, located outside the xcp locus were organized in an operon (PaQa) which encodes the orphan PaQa subunit. This subunit is able to associate with other components of the classical Xcp machinery to form a functional hybrid T2SS. In the present study, using a transcriptional lacZ fusion, we found that the PaQa operon was more efficiently expressed (i) on solid LB agar than in liquid LB medium, (ii) at 25 °C than at 37 °C and (iii) at an early stage of growth. These results suggested an adaptation of the hybrid system to particular environmental conditions. Transposon mutagenesis led to the finding that vfr and fimV genes are required for optimal expression of the orphan PaQa operon in the defined growth conditions used. Using an original culturing device designed to monitor secretion on solid medium, the ring-plate system, we found that T2SS-dependent secretion of exoproteins, namely the elastase LasB, was affected in a fimV deletion mutant. Our findings led to the discovery of an interplay between FimV and the global regulator Vfr triggering the modulation of the level of Vfr and consequently the modulation of T2SS-dependent secretion on solid medium.


PLOS Pathogens | 2015

A Macrophage Subversion Factor Is Shared by Intracellular and Extracellular Pathogens

Claudine Belon; Chantal Soscia; Audrey Bernut; Aurélie Laubier; Sophie Bleves; Anne-Béatrice Blanc-Potard

Pathogenic bacteria have developed strategies to adapt to host environment and resist host immune response. Several intracellular bacterial pathogens, including Salmonella enterica and Mycobacterium tuberculosis, share the horizontally-acquired MgtC virulence factor that is important for multiplication inside macrophages. MgtC is also found in pathogenic Pseudomonas species. Here we investigate for the first time the role of MgtC in the virulence of an extracellular pathogen, Pseudomonas aeruginosa. A P. aeruginosa mgtC mutant is attenuated in the systemic infection model of zebrafish embryos, and strikingly, the attenuated phenotype is dependent on the presence of macrophages. In ex vivo experiments, the P. aeruginosa mgtC mutant is more sensitive to macrophage killing than the wild-type strain. However, wild-type and mutant strains behave similarly toward macrophage killing when macrophages are treated with an inhibitor of the vacuolar proton ATPase. Importantly, P. aeruginosa mgtC gene expression is strongly induced within macrophages and phagosome acidification contributes to an optimal expression of the gene. Thus, our results support the implication of a macrophage intracellular stage during P. aeruginosa acute infection and suggest that Pseudomonas MgtC requires phagosome acidification to play its intracellular role. Moreover, we demonstrate that P. aeruginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosa MgtC prevents biofilm formation. We propose that MgtC shares a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to host immune response in relation to the different bacterial lifestyles. In addition, the phenotypes observed with the mgtC mutant in infection models can be mimicked in wild-type P. aeruginosa strain by producing a MgtC antagonistic peptide, thus highlighting MgtC as a promising new target for anti-virulence strategies.


Methods of Molecular Biology | 2014

Gene transfer: transformation/electroporation.

F. Cadoret; Chantal Soscia; Romé Voulhoux

Since Pseudomonas aeruginosa is a non-naturally competent bacterium, various methods have been developed to transfer exogenous DNA. Alternatively to transduction and conjugation, electroporation can also be used to transfer exogenous DNA molecules into Pseudomonas. Electroporation uses an electric field which generates pores in bacterial membranes allowing the entry of the exogenous DNA molecule. In contrast to conjugation which is restricted to the transfer of DNA from one bacterial cell to another, electroporation can be used to transfer all types of DNA resuspended in water.


Microbial Cell | 2015

Intracellular phase for an extracellular bacterial pathogen: MgtC shows the way

Audrey Bernut; Claudine Belon; Chantal Soscia; Sophie Bleves; Anne-Béatrice Blanc-Potard

Pseudomonas aeruginosa is an extracellular pathogen known to impair host phagocytic functions. However, our recent results identify MgtC as a novel actor in P. aeruginosa virulence, which plays a role in an intramacrophage phase of this pathogen. In agreement with its intracellular function, P. aeruginosa mgtC gene expression is strongly induced when the bacteria reside within macrophages. MgtC was previously known as a horizontally-acquired virulence factor important for multiplication inside macrophages in several intracellular bacterial pathogens. MgtC thus provides a singular example of a virulence determinant that subverts macrophages both in intracellular and extracellular pathogens. Moreover, we demonstrate that P. aeruginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosa MgtC prevents biofilm formation. We propose that MgtC has a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to the host in relation to the different bacterial lifestyles. MgtC thus appears as an attractive target for antivirulence strategies and our work provides a natural peptide as MgtC antagonist, which paves the way for the development of MgtC inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes.

Isabelle Ventre; Andrew L. Goodman; Isabelle Vallet-Gely; Perrine Vasseur; Chantal Soscia; Søren Molin; Sophie Bleves; Andrée Lazdunski; Stephen Lory; Alain Filloux

Collaboration


Dive into the Chantal Soscia's collaboration.

Top Co-Authors

Avatar

Sophie Bleves

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romé Voulhoux

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie Bleves

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Andrée Lazdunski

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Audrey Bernut

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Ventre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Steve Garvis

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge