Chantal Teulières
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chantal Teulières.
Transgenic Research | 2003
Vincent Tournier; Sabine Grat; Christiane Marque; Walid El Kayal; Ricardo Penchel; Gisele de Andrade; Alain-Michel Boudet; Chantal Teulières
Regeneration problems are one of the main limitations preventing the wider application of genetic engineering strategies to the genus Eucalyptus. Seedlings from Eucalyptus grandis × Eucalyptus urophylla were selected according to their regeneration (adventitious organogenesis) and transformation capacity. After in vitro cloning, the best genotype of 250 tested was transformed via Agrobacterium tumefaciens. A cinnamyl alcohol dehydrogenase (CAD) antisense cDNA from Eucalyptus gunnii was transferred, under the control of the 35S CaMV promoter with a double enhancer sequence, into a selected genotype. According to kanamycin resistance and PCR verification, 120 transformants were generated. 58% were significantly inhibited for CAD activity, and nine exhibited the highest down-regulation, ranging from 69 to 78% (22% residual activity). Southern blot hybridisation showed a low transgene copy number, ranging from 1 to 4, depending on the transgenic line. Northern analyses on the 5–16 and 3–23 lines (respectively one and two insertion sites) demonstrated the antisense origin of CAD gene inhibition. With respectively 26 and 22% of residual CAD activity, these two lines were considered as the most interesting and transferred to the greenhouse for further analyses.
Journal of Experimental Botany | 2009
Marie Navarro; G. Marque; C. Ayax; Guylaine Keller; J. P. Borges; Christiane Marque; Chantal Teulières
CBF transcription factors play central roles in the control of freezing tolerance in plants. The isolation of two additional CBF genes, EguCBF1c and EguCBF1d, from E. gunnii, one of the cold-hardiest Eucalyptus species, is described. While the EguCBF1D protein sequence is very similar to the previously characterized EguCBF1A and EguCBF1B sequences, EguCBF1C is more distinctive, in particular in the AP2-DBD (AP2-DNA binding domain). The expression analysis of the four genes by RT-qPCR reveals that none of them is specific to one stress but they are all preferentially induced by cold, except for the EguCBF1c gene which is more responsive to salt. The calculation of the transcript copy number enables the quantification of constitutive CBF gene expression. This basal level, significant for the four genes, greatly influences the final EguCBF1 transcript level in the cold. A cold shock at 4 °C, as well as a progressive freezing which mimics a natural frost episode, trigger a fast and strong response of the EguCBF1 genes, while growth at acclimating temperatures results in a lower but more durable induction. The differential expression of the four EguCBF1 genes under these cold regimes suggests that there is a complementary regulation. The high accumulation of the CBF transcript, observed in response to the different types of cold conditions, might be a key for the winter survival of this evergreen broad-leaved tree.
Plant Physiology | 1997
Sébastien Travert; Luisa Valério; Isabelle Fouraste; Alain M. Boudet; Chantal Teulières
A cell-suspension culture obtained from the hybrid Eucalyptus gunnii/Eucalyptus globulus was hardened by exposure to lower temperatures, whereas in the same conditions cells from a hybrid with a more frost-sensitive genotype, Eucalyptus cypellocarpa/Eucalyptus globulus, were not able to acclimate. During the cold exposure the resistant cells accumulated soluble sugars, in particular fructose and sucrose, with a limited increase in cell osmolality. In contrast, the cell suspension that was unable to acclimate did not accumulate soluble sugars in response to the same cold treatment. To an extent similar to that induced after a cold acclimation, frost-hardiness of the cells increased after a 14-h incubation with specific soluble sugars such as sucrose, raffinose, fructose, and mannitol. Such hardening was also observed for long-term cultures in mannitol-enriched medium. This cryoprotective effect of sugars without exposure to lower temperatures was observed in both the resistant and the sensitive genotypes. Mannitol was one of the most efficient carbohydrates for the cryoprotection of eucalyptus. The best hardiness (a 2.7-fold increase in relative freezing tolerance) was obtained for the resistant cells by the cumulative effect of cold-induced acclimation and mannitol treatment. This positive effect of certain sugars on eucalyptus freezing tolerance was not colligative, since it was independent of osmolality and total sugar content.
Critical Reviews in Plant Sciences | 2014
Michael Wisniewski; Annette Nassuth; Chantal Teulières; Christiane Marque; Jeannine Rowland; Phi Bang Cao; Allan F. Brown
The term cold hardiness or freezing tolerance is used to represent, in a general sense, the ability of plants to adapt to and withstand freezing temperatures. It is a complex, multigenic trait that is too often viewed as a single entity when in fact it is composed of many aspects, all of which can be to some extent viewed as genetically distinct. Advances in molecular biology and genomics have provided significant advances in understanding how plants respond to low temperature and acquire freezing tolerance. Among the most important discoveries has been the identification of the CBF/DREB transcription factor. This transcription factor, along with its regulators such as ICE transcription factors, play a major role in sensing low temperature, initiating the process of cold acclimation, and inducing the expression of a large set of cold-regulated genes. These latter genes are presumed to ameliorate injury to plant cells as a result of freeze-induced desiccation and the presence of extracellular ice. The present review provides a comprehensive overview of CBF and ICE genes in a number of woody plants whose genomes have been sequenced and provides information on the attempts to identify genetic markers for use in marker-assisted selection (MAS) or to improve cold hardiness using genetic transformation technologies. Functional studies of CBF genes in woody plants have indicated that their regulation and impact on abiotic stress resistance are more complex than in herbaceous plants. In particular, the possible relationship of CBF to dormancy is highlighted. Cold hardiness is a complex trait and the challenge in the future will be to use the molecular and genetic tools that are being developed, as well as new developments in bioinformatics, to integrate complex sets of data into a systems view of plant biology. This approach holds the best promise for developing the ability to significantly improve cold hardiness in economically important crops while still maintaining high levels of plant productivity and yield.
Molecular Breeding | 2003
Luisa Valério; Dawn Carter; José Carlos Rodrigues; Vincent Tournier; Jorge Gominho; Christiane Marque; Alain-Michel Boudet; Martin Maunders; Helena Pereira; Chantal Teulières
A procedure for A. tumefaciens-mediated genetic transformation of a juvenile E. camaldulensis clone is presented. CAD antisense full-length cDNAs from Eucalyptus gunnii or Nicotiana tabacum was introduced under the control of the CaMV 35S DE promoter. From 44 individual transgenic shoots selected by PCR analysis, 32% exhibited a significant reduction of CAD activity, up to 83%. The use of the heterologous tobacco CAD cDNA construct was less efficient (up to 65% reduction). Transcript levels in 3 lines obtained using the homologous eucalyptus cDNA confirmed the under-expression of the CAD gene, and Southern blot data indicated a low transgene copy number ranging between 1 and 3. The most down-regulated plant contained a single transgene copy. Therefore, for the first time in eucalyptus, genetically modified plantlets exhibiting a strong inhibition of CAD activity associated with decreased transcription were recovered. Five transgenic lines, transferred to the greenhouse for 10 months, went through a wood chemical analysis that showed no differences in lignin quantity (through Fourier transform infrared spectroscopy), composition (through analytical pyrolysis) or pulp yield (through Kraft pulping) compared to control trees. Despite the down-regulation of the CAD gene in this Eucalyptus species of economic interest, the lack of significant changes in lignin profiles indicates that probably the trees were not sufficiently suppressed in CAD throughout development to exhibit obvious modifications in lignin and pulping. This raises the problem of the requirements for an efficient modulation of lignification in trees such as eucalyptus.
Tree Genetics & Genomes | 2009
Guylaine Keller; Thibault Marchal; Hélène San-Clemente; Marie Navarro; Nathalie Ladouce; Patrick Wincker; Arnaud Couloux; Chantal Teulières; Christiane Marque
A cDNA library was constructed from leaves of a cold-acclimated Eucalyptus gunnii elite clone and 13,056 ESTs were sequenced. When the 5,457 unique sequences were compared with Arabidopsis, rice, and poplar datasets, more than 38% of no-hits were found and the best annotation was provided by the woody perennial poplar database. However, among the 62% of sequences that could be annotated, the vast majority (87.5%) was found to be common to the four compared plant species, which shows how highly conserved this gene pool is across the plant kingdom. When the distribution of the annotated sequences was studied according to the Gene Ontology classification, some typical features of the dehydrative stress transcriptome were observed. In particular, genes from sugar metabolism and, above all, those induced by stress or external stimuli were well represented (6% in total). In addition, the library was found to contain a substantial number of ESTs encoding putative transcription factors including CBF (CRT-Binding Factor). The enrichment of this library with stress-related genes was strongly suggested by the high redundancy (up to 300 ESTs) of several genes known to be involved in cell protection such as the PCP (Pollen Coat Protein), Lti6b (Low temperature induced) or metallothionein. It was further confirmed by demonstrating the cold induction of a set of representative genes through Real Time-PCR. All these characteristics make this Eucalyptus EST collection very suitable for investigating the molecular basis of cold tolerance in a woody perennial and for isolating important or new candidate frost tolerance genes.
PLOS ONE | 2015
Phi Bang Cao; Sahar Azar; Hélène San-Clemente; F. Mounet; Christophe Dunand; G. Marque; Christiane Marque; Chantal Teulières
Background The AP2/ERF family includes a large number of developmentally and physiologically important transcription factors sharing an AP2 DNA-binding domain. Among them DREB1/CBF and DREB2 factors are known as master regulators respectively of cold and heat/osmotic stress responses. Experimental Approaches The manual annotation of AP2/ERF family from Eucalyptus grandis, Malus, Populus and Vitis genomes allowed a complete phylogenetic study for comparing the structure of this family in woody species and the model Arabidopsis thaliana. Expression profiles of the whole groups of EgrDREB1 and EgrDREB2 were investigated through RNAseq database survey and RT-qPCR analyses. Results The structure and the size of the AP2/ERF family show a global conservation for the plant species under comparison. In addition to an expansion of the ERF subfamily, the tree genomes mainly differ with respect to the group representation within the subfamilies. With regard to the E. grandis DREB subfamily, an obvious feature is the presence of 17 DREB1/CBF genes, the maximum reported to date for dicotyledons. In contrast, only six DREB2 have been identified, which is similar to the other plants species under study, except for Malus. All the DREB1/CBF and DREB2 genes from E. grandis are expressed in at least one condition and all are heat-responsive. Regulation by cold and drought depends on the genes but is not specific of one group; DREB1/CBF group is more cold-inducible than DREB2 which is mainly drought responsive. Conclusion These features suggest that the dramatic expansion of the DREB1/CBF group might be related to the adaptation of this evergreen tree to climate changes when it expanded in Australia.
Physiologia Plantarum | 2017
Hong C. Nguyen; Phi Bang Cao; Hélène San Clemente; Raphael Ployet; Fabien Mounet; Nathalie Ladouce; Luc Harvengt; Christiane Marque; Chantal Teulières
Annotation of the Eucalyptus grandis genome showed a large amplification of the dehydration-responsive element binding 1/C-repeat binding factor (DREB1/CBF) group without recent DREB2 gene duplication compared with other plant species. The present annotation of the CBF and DREB2 genes from a draft of the Eucalyptus gunnii genome sequence reveals at least one additional CBF copy in the E. gunnii genome compared with E. grandis, suggesting that this group is still evolving, unlike the DREB2 group. This study aims to investigate the redundancy/neo- or sub-functionalization of the duplicates and the relative involvement of the two groups in abiotic stress responses in both E. grandis and E. gunnii (lower growth but higher cold resistance). A comprehensive transcriptional analysis using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR) was performed on leaves, stems and roots from the two Eucalyptus species after cold, heat or drought treatment. A large CBF cluster accounted for most of the cold response in all the organs, whereas heat and drought responses mainly involved a small CBF cluster and the DREB2 genes. In addition, CBF putative target genes, known to be involved in plant tolerance and development, were found to be cold-regulated. The higher transcript amounts of both the CBF and target genes in the cold tolerant E. gunnii contrasted with the higher CBF induction rates in the fast growing E. grandis. Altogether, the present results, in agreement with previous data about Eucalyptus transgenic lines over-expressing CBF, suggest that these factors, which promote both stress protection and growth limitation, participate in the trade-off between growth and resistance in this woody species.
Trees-structure and Function | 2013
Guylaine Keller; Phi Bang Cao; Hélène San Clemente; Walid El Kayal; Christiane Marque; Chantal Teulières
Plants respond to low temperatures through an intricately coordinated transcription network which results in cold acclimation, a phenomenon by which plants increase their freezing tolerance. To analyse the global transcriptome of Eucalyptus gunnii cold-acclimated leaves, 2,662 ESTs were classified by FunCat and the corresponding transcripts quantified throughout a cold acclimation programme using macro-array technique. This combined analysis resulted in the description of the temporal patterns of gene expression with regard to their identity and corresponding functional categories. This paper proposes a predictive hierarchical classification of the main protective mechanisms likely to participate in the increased cold tolerance of E. gunnii. Given the time course and level of the LEA/dehydrin accumulation, the cryoprotection through proteins may explain most of the hardening. This cryoprotection would be completed by sugar synthesis (raffinose and maltose). As a permanent response, red-ox regulation and protection of membranes or macromolecules against peroxidation look mainly associated with metallothioneins. A limited part of cold response seems to be dedicated to dehydration avoidance through osmoprotectants or to frost avoidance through antifreeze proteins and deposition of cuticle wax.
Genome Biology and Evolution | 2015
Qiang Li; Hong Yu; Phi Bang Cao; Nizar Fawal; Catherine Mathé; Sahar Azar; Hua Cassan-Wang; Alexander Andrew Myburg; Jacqueline Grima-Pettenati; Christiane Marque; Chantal Teulières; Christophe Dunand
Plant organisms contain a large number of genes belonging to numerous multigenic families whose evolution size reflects some functional constraints. Sequences from eight multigenic families, involved in biotic and abiotic responses, have been analyzed in Eucalyptus grandis and compared with Arabidopsis thaliana. Two transcription factor families APETALA 2 (AP2)/ethylene responsive factor and GRAS, two auxin transporter families PIN-FORMED and AUX/LAX, two oxidoreductase families (ascorbate peroxidases [APx] and Class III peroxidases [CIII Prx]), and two families of protective molecules late embryogenesis abundant (LEA) and DNAj were annotated in expert and exhaustive manner. Many recent tandem duplications leading to the emergence of species-specific gene clusters and the explosion of the gene numbers have been observed for the AP2, GRAS, LEA, PIN, and CIII Prx in E. grandis, while the APx, the AUX/LAX and DNAj are conserved between species. Although no direct evidence has yet demonstrated the roles of these recent duplicated genes observed in E. grandis, this could indicate their putative implications in the morphological and physiological characteristics of E. grandis, and be the key factor for the survival of this nondormant species. Global analysis of key families would be a good criterion to evaluate the capabilities of some organisms to adapt to environmental variations.