Chantel McSkimming
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chantel McSkimming.
Circulation Research | 2015
Sam M. Rosenfeld; Heather M. Perry; Ayelet Gonen; Thomas A. Prohaska; Prasad Srikakulapu; Sukhdeep Grewal; Deepanjana Das; Chantel McSkimming; Angela M. Taylor; Sotirios Tsimikas; Timothy P. Bender; Joseph L. Witztum; Coleen A. McNamara
RATIONALE B cells contribute to atherosclerosis through subset-specific mechanisms. Whereas some controversy exists about the role of B-2 cells, B-1a cells are atheroprotective because of secretion of atheroprotective IgM antibodies independent of antigen. B-1b cells, a unique subset of B-1 cells that respond specifically to T-cell-independent antigens, have not been studied within the context of atherosclerosis. OBJECTIVE To determine whether B-1b cells produce atheroprotective IgM antibodies and function to protect against diet-induced atherosclerosis. METHODS AND RESULTS We demonstrate that B-1b cells are sufficient to produce IgM antibodies against oxidation-specific epitopes on low-density lipoprotein both in vitro and in vivo. In addition, we demonstrate that B-1b cells provide atheroprotection after adoptive transfer into B- and T-cell deficient (Rag1(-/-)Apoe(-/-)) hosts. We implicate inhibitor of differentiation 3 (Id3) in the regulation of B-1b cells as B-cell-specific Id3 knockout mice (Id3(BKO)Apoe(-/-)) have increased numbers of B-1b cells systemically, increased titers of oxidation-specific epitope-reactive IgM antibodies, and significantly reduced diet-induced atherosclerosis when compared with Id3(WT)Apoe(-/-) controls. Finally, we report that the presence of a homozygous single nucleotide polymorphism in ID3 in humans that attenuates Id3 function is associated with an increased percentage of circulating B-1 cells and anti-malondialdehyde-low-density lipoprotein IgM suggesting clinical relevance. CONCLUSIONS These results provide novel evidence that B-1b cells produce atheroprotective oxidation-specific epitope-reactive IgM antibodies and protect against atherosclerosis in mice and suggest that similar mechanisms may occur in humans.
Cancer Immunology, Immunotherapy | 2013
Elise P. Salerno; Sofia M. Shea; Walter C. Olson; Gina R. Petroni; Mark E. Smolkin; Chantel McSkimming; Kimberly A. Chianese-Bullock; Craig L. Slingluff
We conducted a randomized clinical trial in 45 patients with resected AJCC stage IIB-IV melanoma to characterize cellular and molecular events at sites of immunization with incomplete Freund’s adjuvant (IFA) alone, or a melanoma vaccine in IFA. At a primary vaccine site, all patients received a multi-peptide melanoma vaccine in IFA. At a replicate vaccine site, which was biopsied, group 1 received IFA only; group 2 received vaccine in IFA. Lymphocytes isolated from replicate vaccine site microenvironments (VSME) were compared to time-matched peripheral blood mononuclear cells (PBMC) in ELISpot and flow cytometry assays. Compared to PBMC, the VSME had fewer naïve and greater proportions of effector memory CD8+ T cells (TCD8). The vast majority of TCD8 within the VSME were activated (CD69+), with a concentration of antigen-specific (tetramerpos) cells in the VSME, particularly in vaccine sites with peptide (group 2). CXCR3+ lymphocytes were concentrated in the VSME of all patients, suggesting IFA-induced chemokine recruitment. TCD8 expression of retention integrins αEβ7 and α1β1 was elevated in VSME, with the highest levels observed in antigen-specific cells in VSME containing peptide (group 2). TCD8 retained in the VSME of both groups were strikingly dysfunctional, with minimal IFN-γ production in response to peptide stimulation and few tetramerpos cells producing IFN-γ. These data suggest that vaccine-induced selective retention and dysfunction of antigen-specific TCD8 within VSME may represent a significant mechanism underlying transient immune responses and low clinical response rates to peptide vaccines administered in IFA.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2017
Graham D. Thomas; Anouk A.J. Hamers; Catherine Nakao; Paola Marcovecchio; Angela M. Taylor; Chantel McSkimming; Anh Nguyen; Coleen A. McNamara; Catherine C. Hedrick
Objective— Human monocyte subsets are defined as classical (CD14++CD16−), intermediate (CD14++CD16+), and nonclassical (CD14+CD16+). Alterations in monocyte subset frequencies are associated with clinical outcomes, including cardiovascular disease, in which circulating intermediate monocytes independently predict cardiovascular events. However, delineating mechanisms of monocyte function is hampered by inconsistent results among studies. Approach and Results— We use cytometry by time-of-flight mass cytometry to profile human monocytes using a panel of 36 cell surface markers. Using the dimensionality reduction approach visual interactive stochastic neighbor embedding (viSNE), we define monocytes by incorporating all cell surface markers simultaneously. Using viSNE, we find that although classical monocytes are defined with high purity using CD14 and CD16, intermediate and nonclassical monocytes defined using CD14 and CD16 alone are frequently contaminated, with average intermediate and nonclassical monocyte purity of ≈86.0% and 87.2%, respectively. To improve the monocyte purity, we devised a new gating scheme that takes advantage of the shared coexpression of cell surface markers on each subset. In addition to CD14 and CD16, CCR2, CD36, HLA-DR, and CD11c are the most informative markers that discriminate among the 3 monocyte populations. Using these additional markers as filters, our revised gating scheme increases the purity of both intermediate and nonclassical monocyte subsets to 98.8% and 99.1%, respectively. We demonstrate the use of this new gating scheme using conventional flow cytometry of peripheral blood mononuclear cells from subjects with cardiovascular disease. Conclusions— Using cytometry by time-of-flight mass cytometry, we have identified a small panel of surface markers that can significantly improve monocyte subset identification and purity in flow cytometry. Such a revised gating scheme will be useful for clinical studies of monocyte function in human cardiovascular disease.
International Journal of Cancer | 2014
Elise P. Salerno; Walter C. Olson; Chantel McSkimming; Sofia M. Shea; Craig L. Slingluff
T‐cell infiltration into the metastatic melanoma microenvironment (MME) correlates with improved patient survival. However, diffuse infiltration into tumor occurs in only 8% of melanoma metastases. Little is known about mechanisms governing T‐cell infiltration into human melanoma metastases or about how those mechanisms may be altered therapeutically. We hypothesized that T cells in the MME would be enriched for chemokine receptors CCR4, CCR5, CXCR3 and homing receptors relevant to the tissue site. Viably cryopreserved single cell suspensions from nineteen melanoma metastases representing three metastatic sites (tumor‐infiltrated lymph node, skin and small bowel) were evaluated by multiparameter flow cytometry and compared to benign lymph nodes and peripheral blood mononuclear cells from patients with Stage IIB–IV melanoma. T cells in the melanoma metastases contained large effector memory populations, high proportions of activated, moderately differentiated cells and few regulatory T cells. Site‐specific homing was suggested in bowel, with high expression of CCR9. We neither encounter the anticipated enrichment of integrin α4β7 in bowel, cutaneous leukocyte antigen (CLA) in skin, nor integrin α4β1 or receptor CXCR3 in metastatic sites. Retention integrins αEβ7, α1β1 and α2β1 were significantly elevated in metastases. These data suggest limited tissue site‐specific homing to human melanoma metastases, but a significant role for retention integrins in maintaining intratumoral T cells. Our findings also raise the possibility that T‐cell homing, infiltration, and retention in melanoma metastases may be increased by increasing expression of ligands for CLA, α4β1 and CXCR3 on intratumoral endothelium.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2016
Daniel B. Harmon; Prasad Srikakulapu; Jennifer L. Kaplan; Stephanie N. Oldham; Chantel McSkimming; James C. Garmey; Heather M. Perry; Jennifer L. Kirby; Thomas A. Prohaska; Ayelet Gonen; Peter Hallowell; Bruce Schirmer; Sotirios Tsimikas; Angela M. Taylor; Joseph L. Witztum; Coleen A. McNamara
Objective— Little is known about the role(s) B cells play in obesity-induced metabolic dysfunction. This study used a mouse with B-cell–specific deletion of Id3 (Id3Bcell KO) to identify B-cell functions involved in the metabolic consequences of obesity. Approach and Results— Diet-induced obese Id3Bcell KO mice demonstrated attenuated inflammation and insulin resistance in visceral adipose tissue (VAT), and improved systemic glucose tolerance. VAT in Id3Bcell KO mice had increased B-1b B cells and elevated IgM natural antibodies to oxidation-specific epitopes. B-1b B cells reduced cytokine production in VAT M1 macrophages, and adoptively transferred B-1b B cells trafficked to VAT and produced natural antibodies for the duration of 13-week studies. B-1b B cells null for Id3 demonstrated increased proliferation, established larger populations in Rag1 −/− VAT, and attenuated diet-induced glucose intolerance and VAT insulin resistance in Rag1 −/− hosts. However, transfer of B-1b B cells unable to secrete IgM had no effect on glucose tolerance. In an obese human population, results provided the first evidence that B-1 cells are enriched in human VAT and IgM antibodies to oxidation-specific epitopes inversely correlated with inflammation and insulin resistance. Conclusions— NAb-producing B-1b B cells are increased in Id3Bcell KO mice and attenuate adipose tissue inflammation and glucose intolerance in diet-induced obese mice. Additional findings are the first to identify VAT as a reservoir for human B-1 cells and to link anti-inflammatory IgM antibodies with reduced inflammation and improved metabolic phenotype in obese humans.
Molecular metabolism | 2015
Jennifer L Kaplan; Melissa A. Marshall; Chantel McSkimming; Daniel B Harmon; James C. Garmey; Stephanie N. Oldham; Peter T. Hallowell; Coleen A. McNamara
Objective Macrophages are important producers of obesity-induced MCP-1; however, initial obesity-induced increases in MCP-1 production precede M1 macrophage accumulation in visceral adipose tissue (VAT). The initial cellular source of obesity-induced MCP-1 in vivo is currently unknown. Preliminary reports based on in vitro studies of preadipocyte cell lines and adherent stroma-vascular fraction cells suggest that resident stromal cells express MCP-1. In the past several years, elegant methods of identifying adipocyte progenitor cells (AdPCs) have become available, making it possible to study these cells in vivo. We have previously published that global deletion of transcription factor Inhibitor of Differentiation 3 (Id3) attenuates high fat diet-induced obesity, but it is unclear if Id3 plays a role in diet-induced MCP-1 production. We sought to determine the initial cellular source of MCP-1 and identify molecular regulators mediating MCP-1 production. Methods Id3+/+ and Id3−/− mice were fed either a standard chow or HFD for varying lengths of time. Flow cytometry, semi-quantitative real-time PCR, ELISAs and adoptive transfers were used to assess the importance of AdPCs during diet-induced obesity. Flow cytometry was also performed on a cohort of 14 patients undergoing bariatric surgery. Results Flow cytometry identified committed CD45−CD31−Ter119−CD29+CD34+Sca-1+CD24− adipocyte progenitor cells as producers of high levels of MCP-1 in VAT. High-fat diet increased AdPC numbers, an effect dependent on Id3. Loss of Id3 increased p21Cip1 levels and attenuated AdPC proliferation, resulting in reduced MCP-1 and M1 macrophage accumulation in VAT, compared to Id3+/+ littermate controls. AdPC rescue by adoptive transfer of 50,000 Id3+/+ AdPCs into Id3−/− recipient mice increased MCP-1 levels and M1 macrophage number in VAT. Additionally, flow cytometry identified MCP-1-producing CD45−CD31−CD34+CD44+CD90+ AdPCs in human omental and subcutaneous adipose tissue, with a higher percentage in omental adipose. Furthermore, high surface expression of CD44 marked abundant MCP-1 producers, only in visceral adipose tissue. Conclusions This study provides the first in vivo evidence, to our knowledge, that committed AdPCs in VAT are the initial source of obesity-induced MCP-1 and identifies the helix-loop-helix transcription factor Id3 as a critical regulator of p21Cip1 expression, AdPC proliferation, MCP-1 expression and M1 macrophage accumulation in VAT. Inhibition of Id3 and AdPC expansion, as well as CD44 expression in human AdPCs, may serve as unique therapeutic targets for the regulation of adipose tissue inflammation.
Journal of Clinical Investigation | 2016
Hsin-Yuan Cheng; Dalia E. Gaddis; Runpei Wu; Chantel McSkimming; LaTeira D. Haynes; Angela M. Taylor; Coleen A. McNamara; Mary G. Sorci-Thomas; Catherine C. Hedrick
ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol accumulation and alters T cell homeostasis, which may contribute to progression of atherosclerosis. Here, we investigated how the selective loss of ABCG1 in T cells impacts atherosclerosis in LDL receptor-deficient (LDLR-deficient) mice, a model of the disease. In LDLR-deficient mice fed a high-cholesterol diet, T cell-specific ABCG1 deficiency protected against atherosclerotic lesions. Furthermore, T cell-specific ABCG1 deficiency led to a 30% increase in Treg percentages in aorta and aorta-draining lymph nodes (LNs) of these mice compared with animals with only LDLR deficiency. When Abcg1 was selectively deleted in Tregs of LDLR-deficient mice, we observed a 30% increase in Treg percentages in aorta and aorta-draining LNs and reduced atherosclerosis. In the absence of ABCG1, intracellular cholesterol accumulation led to downregulation of the mTOR pathway, which increased the differentiation of naive CD4 T cells into Tregs. The increase in Tregs resulted in reduced T cell activation and increased IL-10 production by T cells. Last, we found that higher ABCG1 expression in Tregs was associated with a higher frequency of these cells in human blood samples. Our study indicates that ABCG1 regulates T cell differentiation into Tregs, highlighting a pathway by which cholesterol accumulation can influence T cell homeostasis in atherosclerosis.
Frontiers in Physiology | 2017
Prasad Srikakulapu; Aditi Upadhye; Sam M. Rosenfeld; Melissa A. Marshall; Chantel McSkimming; Alexandra W. Hickman; Ileana S. Mauldin; Gorav Ailawadi; M. Beatriz S. Lopes; Angela M. Taylor; Coleen A. McNamara
Adipose tissue surrounding major arteries (Perivascular adipose tissue or PVAT) has long been thought to exist to provide vessel support and insulation. Emerging evidence suggests that PVAT regulates artery physiology and pathology, such as, promoting atherosclerosis development through local production of inflammatory cytokines. Yet the immune subtypes in PVAT that regulate inflammation are poorly characterized. B cells have emerged as important immune cells in the regulation of visceral adipose tissue inflammation and atherosclerosis. B cell-mediated effects on atherosclerosis are subset-dependent with B-1 cells attenuating and B-2 cells aggravating atherosclerosis. While mechanisms whereby B-2 cells aggravate atherosclerosis are less clear, production of immunoglobulin type M (IgM) antibodies is thought to be a major mechanism whereby B-1 cells limit atherosclerosis development. B-1 cell-derived IgM to oxidation specific epitopes (OSE) on low density lipoproteins (LDL) blocks oxidized LDL-induced inflammatory cytokine production and foam cell formation. However, whether PVAT contains B-1 cells and whether atheroprotective IgM is produced in PVAT is unknown. Results of the present study provide clear evidence that the majority of B cells in and around the aorta are derived from PVAT. Interestingly, a large proportion of these B cells belong to the B-1 subset with the B-1/B-2 ratio being 10-fold higher in PVAT relative to spleen and bone marrow. Moreover, PVAT contains significantly greater numbers of IgM secreting cells than the aorta. ApoE−/− mice with B cell-specific knockout of the gene encoding the helix-loop-helix factor Id3, known to have attenuated diet-induced atherosclerosis, have increased numbers of B-1b cells and increased IgM secreting cells in PVAT relative to littermate controls. Immunostaining of PVAT on human coronary arteries identified fat associated lymphoid clusters (FALCs) harboring high numbers of B cells, and flow cytometry demonstrated the presence of T cells and B cells including B-1 cells. Taken together, these results provide evidence that murine and human PVAT harbor B-1 cells and suggest that local IgM production may serve to provide atheroprotection.
Cancer Immunology, Immunotherapy | 2009
Kerrington R. Molhoek; Chantel McSkimming; Walter C. Olson; David L. Brautigan; Craig L. Slingluff
Nature Communications | 2018
Dalia E. Gaddis; Lindsey Padgett; Runpei Wu; Chantel McSkimming; Veronica Romines; Angela M. Taylor; Coleen A. McNamara; Mitchell Kronenberg; Shane Crotty; Michael J. Thomas; Mary G. Sorci-Thomas; Catherine C. Hedrick