Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chao Jen Lai is active.

Publication


Featured researches published by Chao Jen Lai.


American Journal of Roentgenology | 2007

Dedicated Cone-Beam Breast CT: Feasibility Study with Surgical Mastectomy Specimens

Wei Tse Yang; Selin Carkaci; L Chen; Chao Jen Lai; Aysegul A. Sahin; Gary J. Whitman; Chris C. Shaw

OBJECTIVEnThe purpose of this study was to investigate the feasibility of diagnostic breast imaging using a flat-panel detector-based cone-beam CT system.nnnCONCLUSIONnImaging of 12 mastectomy specimens was performed at 50-80 kVp with a voxel size of 145 or 290 microm. Our study shows that cone-beam breast CT images have exceptional tissue contrast and can potentially reduce examination time with comparable radiation dose.


Medical Physics | 2007

Visibility of microcalcification in cone beam breast CT: Effects of x-ray tube voltage and radiation dose

Chao Jen Lai; Chris C. Shaw; L Chen; M Altunbas; Xinming Liu; T Han; T Wang; Wei Yang; Gary J. Whitman; Shu Ju Tu

Mammography is the only technique currently used for detecting microcalcification (MC) clusters, an early indicator of breast cancer. However, mammographic images superimpose a three-dimensional compressed breast image onto two-dimensional projection views, resulting in overlapped anatomical breast structures that may obscure the detection and visualization of MCs. One possible solution to this problem is the use of cone beam computed tomography (CBCT) with a flat-panel (FP) digital detector. Although feasibility studies of CBCT techniques for breast imaging have yielded promising results, they have not shown how radiation dose and x-ray tube voltage affect the accuracy with which MCs are detected by CBCT experimentally. We therefore conducted a phantom study using a FP-based CBCT system with various mean glandular doses and kVp values. An experimental CBCT scanner was constructed with a data acquisition rate of 7.5 frames/s. 10.5 and 14.5 cm diameter breast phantoms made of gelatin were used to simulate uncompressed breasts consisting of 100% glandular tissue. Eight different MC sizes of calcium carbonate grains, ranging from 180-200 microm to 355-425 microm, were used to simulate MCs. MCs of the same size were arranged to form a 5 x 5 MC cluster and embedded in the breast phantoms. These MC clusters were positioned at 2.8 cm away from the center of the breast phantoms. The phantoms were imaged at 60, 80, and 100 kVp. With a single scan (360 degrees), 300 projection images were acquired with 0.5 x, 1x, and 2x mean glandular dose limit for 10.5 cm phantom and with 1x, 2x, and 4x for 14.5 cm phantom. A Feldkamp algorithm with a pure ramp filter was used for image reconstruction. The normalized noise level was calculated for each x-ray tube voltage and dose level. The image quality of the CBCT images was evaluated by counting the number of visible MCs for each MC cluster for various conditions. The average percentage of the visible MCs was computed and plotted as a function of the MGD, the kVp, and the average MC size. The results showed that the MC visibility increased with the MGD significantly but decreased with the breast size. The results also showed that the x-ray tube voltage affects the detection of MCs under different circumstances. With a 50% threshold, the minimum detectable MC sizes for the 10.5 cm phantom were 348(+/-2), 288(+/-7), 257(+/-2) microm at 3, 6, and 12 mGy, respectively. Those for the 14.5 cm phantom were 355 (+/-1), 307 (+/-7), 275 (+/-5) microm at 6, 12, and 24 mGy, respectively. With a 75% threshold, the minimum detectable MC sizes for the 10.5 cm phantom were 367 (+/-1), 316 (+/-7), 265 (+/-3) microm at 3, 6, and 12 mGy, respectively. Those for the 14.5 cm phantom were 377 (+/-3), 334 (+/-5), 300 (+/-2) microm at 6, 12, and 24 mGy, respectively.


Medical Physics | 2002

Microcalcification detectability for four mammographic detectors: Flat‐panel, CCD, CR, and screen/film

Xiujiang J. Rong; Chris C. Shaw; Dennis A. Johnston; Michael R. Lemacks; Xinming Liu; Gary J. Whitman; Mark J. Dryden; Tanya W. Stephens; Stephen K. Thompson; Kerry Krugh; Chao Jen Lai

Amorphous silicon/cesium iodide (a-Si:H/CsI:Tl) flat-panel (FP)-based full-field digital mammography systems have recently become commercially available for clinical use. Some investigations on physical properties and imaging characteristics of these types of detectors have been conducted and reported. In this perception study, a phantom containing simulated microcalcifications (microCs) of various sizes was imaged with four detector systems: a FP system, a small field-of-view charge coupled device (CCD) system, a high resolution computed radiography (CR) system, and a conventional mammography screen/film (SF) system. The images were reviewed by mammographers as well as nonradiologist participants. Scores reflecting confidence ratings were given and recorded for each detection task. The results were used to determine the average confidence-rating scores for the four imaging systems. Receiver operating characteristics (ROC) analysis was also performed to evaluate and compare the overall detection accuracy for the four detector systems. For calcifications of 125-140 microm in size, the FP system was found to have the best performance with the highest confidence-rating scores and the greatest detection accuracy (Az = 0.9) in the ROC analysis. The SF system was ranked second while the CCD system outperformed the CR system. The p values obtained by applying a Student t-test to the results of the ROC analysis indicate that the differences between any two systems are statistically significant (p<0.005). Differences in microC detectability for the large (150-160 microm) and small (112-125 microm) size microC groups showed a wider range of p values (not all p values are smaller than 0.005, ranging from 0.6 to <0.001) compared to the p values obtained for the medium (125-140 microm) size microC group. Using the p values to assess the statistical significance, the use of the average confidence-rating scores was not as significant as the use of the ROC analysis p value for p value.


Medical Physics | 2008

Feasibility of volume-of-interest (VOI) scanning technique in cone beam breast CT-a preliminary study

L Chen; Chris C. Shaw; M Altunbas; Chao Jen Lai; Xinming Liu; T Han; T Wang; Wei T. Yang; Gary J. Whitman

This work is to demonstrate that high quality cone beam CT images can be generated for a volume of interest (VOI) and to investigate the exposure reduction effect, dose saving, and scatter reduction with the VOI scanning technique. The VOI scanning technique involves inserting a filtering mask between the x-ray source and the breast during image acquisition. The mask has an opening to allow full x-ray exposure to be delivered to a preselected VOI and a lower, filtered exposure to the region outside the VOI. To investigate the effects of increased noise due to reduced exposure outside the VOI on the reconstructed VOI image, we directly extracted the projection data inside the VOI from the full-field projection data and added additional data to the projection outside the VOI to simulate the relative noise increase due to reduced exposure. The nonuniform reference images were simulated in an identical manner to normalize the projection images and measure the x-ray attenuation factor for the object. Regular Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the 3D images. The noise level inside the VOI was evaluated and compared with that of the full-field higher exposure image. Calcifications phantom and low contrast phantom were imaged. Dose reduction was investigated by estimating the dose distribution in a cylindrical water phantom using Monte Carlo simulation based Geant4 package. Scatter reduction at the detector input was also studied. Our results show that with the exposure level reduced by the VOI mask, the dose levels were significantly reduced both inside and outside the VOI without compromising the accuracy of image reconstruction, allowing for the VOI to be imaged with more clarity and helping to reduce the breast dose. The contrast-to-noise ratio inside the VOI was improved. The VOI images were not adversely affected by noisier projection data outside the VOI. Scatter intensities at the detector input were also shown to decrease significantly both inside and outside the VOI in the projection images, indicating potential improvement of image quality inside the VOI and contribution to dose reduction both inside and outside the VOI.


Medical Physics | 2008

Spatial resolution properties in cone beam CT: A simulation study

L Chen; Chris C. Shaw; M Altunbas; Chao Jen Lai; Xinming Liu

This work is intended to investigate the spatial resolution properties in cone beam CT by estimating the point spread functions (PSFs) in the reconstructed 3D images through simulation. The point objects were modeled as 3D delta functions. Their projections onto the detector plane were analytically derived and blurred with 2D PSFs estimated and used to represent the detector and focal spot blurring effects. The 2D PSF for detector blurring was computed from the line spread function measured for a typical a-Si/CsI flat panel detector used for general radiography. The focal spot blurring effect was simulated for an x-ray source with a nominal focal spot size of 0.6 mm and 1.33 x magnification at the rotating center. Projection images were computed and sampled with an interval significantly smaller than the detector pixel size to avoid aliasing. Images were reconstructed using the Feldkamp algorithm with the five different filter functions. Reconstructed PSFs were plotted and analyzed to investigate the effects of detector blurring alone, focal spot blurring alone, or a combination of the two on the PSFs and their variations with the radial distance and z-level. Effects of binning and reconstruction filters were also studied. Our results show that the PSFs due to detector blurring are largely symmetric and vary little with the locations of the point objects. With focal spot blurring only or added to detector blurring, the PSFs along the rotation axis were largely symmetric but became increasingly asymmetric as the point objects were moved away from the rotation axis. The PSFs were found to become wider in the axial (anode to cathode) direction as the objects were moved toward the cathode side. The 3D PSFs may be approximated by an ellipsoid with three different axial lengths. They were found to point upright along the rotating axis but tilt toward the rotating axis as the point object was moved away from the axis.


Medical Physics | 2009

Dual resolution cone beam breast CT: A feasibility study

L Chen; Y Shen; Chao Jen Lai; T Han; Y Zhong; S Ge; Xinming Liu; T Wang; Wei Yang; Gary J. Whitman; Chris C. Shaw

PURPOSEnIn this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction.nnnMETHODSnWith this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 microm and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package.nnnRESULTSnThe results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan.nnnCONCLUSIONSnThese results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.


Medical Physics | 2011

High resolution dual detector volume-of-interest cone beam breast CT––Demonstration with a bench top system

Y Shen; Y Yi; Y Zhong; Chao Jen Lai; Xinming Liu; Z You; S Ge; T Wang; Chris C. Shaw

PURPOSEnIn this study, we used a small field high resolution detector in conjunction with a full field flat panel detector to implement and investigate the dual detector volume-of-interest (VOI) cone beam breast computed tomography (CBCT) technique on a bench-top system. The potential of using this technique to image small calcifications without increasing the overall dose to the breast was demonstrated. Significant reduction of scatter components in the high resolution projection image data of the VOI was also shown.nnnMETHODSnWith the regular flat panel based CBCT technique, exposures were made at 80 kVp to generate an air kerma of 6 mGys at the isocenter. With the dual detector VOI CBCT technique, a high resolution small field CMOS detector was used to scan a cylindrical VOI (2.5 cm in diameter and height, 4.5 cm off-center) with collimated x-rays at four times of regular exposure level. A flat panel detector was used for full field scan with low x-ray exposures at half of the regular exposure level. The low exposure full field image data were used to fill in the truncated space in the VOI scan data and generate a complete projection image set. The Feldkamp-Davis-Kress (FDK) filtered backprojection algorithm was used to reconstruct high resolution images for the VOI. Two scanning techniques, one breast centered and the other VOI centered, were implemented and investigated. Paraffin cylinders with embedded thin aluminum (Al) wires were imaged and used in conjunction with optically stimulated luminescence (OSL) dose measurements to demonstrate the ability of this technique to image small calcifications without increasing the mean glandular dose (MGD).nnnRESULTSnUsing exposures that produce an air kerma of 6 mGys at the isocenter, the regular CBCT technique was able to resolve the cross-sections of Al wires as thin as 254 μm in diameter in the phantom. For the specific VOI studied, by increasing the exposure level by a factor of 4 for the VOI scan and reducing the exposure level by a factor of 2 for the full filed scan, the dual-detector CBCT technique was able to resolve the cross-sections of Al wires as thin as 152 μm in diameter. The CNR evaluated for the entire Al wire cross-section was found to be improved from 5.5 in regular CBCT to 14.4 and 16.8 with the breast centered and VOI centered scanning techniques, respectively. Even inside VOI center, the VOI scan resulted in significant dose saving with the dose reduced by a factor of 1.6 at the VOI center. Dose saving outside the VOI was substantial with the dose reduced by a factor of 7.3 and 7.8 at the breast center for the breast centered and VOI centered scans, respectively, when compared to full field scan at the same exposure level. The differences between the two dual detector techniques in terms of dose saving and scatter reduction were small with VOI scan at 4×u2009exposure level and full field scan at 0.5 ×u2009exposure level. The MGDs were only 94% of that from the regular CBCT scan.nnnCONCLUSIONSnFor the specific VOI studied, the dual detector VOI CBCT technique has the potential to provide high quality images inside the VOI with MGD similar to or even lower than that of full field breast CBCT. It was also found that our results were compromised by the use of inadequate detectors for the VOI scan. An appropriately selected detector would better optimize the image quality improvement that can be achieved with the VOI CBCT technique.


Medical Physics | 2011

Radiation doses in cone-beam breast computed tomography: a Monte Carlo simulation study.

Y Yi; Chao Jen Lai; T Han; Y Zhong; Y Shen; Xinming Liu; S Ge; Z You; T Wang; Chris C. Shaw

PURPOSEnIn this article, we describe a method to estimate the spatial dose variation, average dose and mean glandular dose (MGD) for a real breast using Monte Carlo simulation based on cone beam breast computed tomography (CBBCT) images. We present and discuss the dose estimation results for 19 mastectomy breast specimens, 4 homogeneous breast models, 6 ellipsoidal phantoms, and 6 cylindrical phantoms.nnnMETHODSnTo validate the Monte Carlo method for dose estimation in CBBCT, we compared the Monte Carlo dose estimates with the thermoluminescent dosimeter measurements at various radial positions in two polycarbonate cylinders (11- and 15-cm in diameter). Cone-beam computed tomography (CBCT) images of 19 mastectomy breast specimens, obtained with a bench-top experimental scanner, were segmented and used to construct 19 structured breast models. Monte Carlo simulation of CBBCT with these models was performed and used to estimate the point doses, average doses, and mean glandular doses for unit open air exposure at the iso-center. Mass based glandularity values were computed and used to investigate their effects on the average doses as well as the mean glandular doses. Average doses for 4 homogeneous breast models were estimated and compared to those of the corresponding structured breast models to investigate the effect of tissue structures. Average doses for ellipsoidal and cylindrical digital phantoms of identical diameter and height were also estimated for various glandularity values and compared with those for the structured breast models.nnnRESULTSnThe absorbed dose maps for structured breast models show that doses in the glandular tissue were higher than those in the nearby adipose tissue. Estimated average doses for the homogeneous breast models were almost identical to those for the structured breast models (p=1). Normalized average doses estimated for the ellipsoidal phantoms were similar to those for the structured breast models (root mean square (rms) percentage difference = 1.7%; p = 0.01), whereas those for the cylindrical phantoms were significantly lower (rms percentage difference = 7.7%; p < 0.01). Normalized MGDs were found to decrease with increasing glandularity.nnnCONCLUSIONSnOur results indicate that it is sufficient to use homogeneous breast models derived from CBCT generated structured breast models to estimate the average dose. This investigation also shows that ellipsoidal digital phantoms of similar dimensions (diameter and height) and glandularity to actual breasts may be used to represent a real breast to estimate the average breast dose with Monte Carlo simulation. We have also successfully demonstrated the use of structured breast models to estimate the true MGDs and shown that the normalized MGDs decreased with the glandularity as previously reported by other researchers for CBBCT or mammography.


Physics in Medicine and Biology | 2009

Reduction in x-ray scatter and radiation dose for volume-of-interest (VOI) cone-beam breast CT—a phantom study

Chao Jen Lai; L Chen; Huojun Zhang; Xinming Liu; Y Zhong; Y Shen; T Han; S Ge; Y Yi; T Wang; Wei Yang; Gary J. Whitman; Chris C. Shaw

With volume-of-interest (VOI) cone-beam computed tomography (CBCT) imaging, one set of projection images are acquired with the VOI collimator at a regular or high exposure level and the second set of projection images are acquired without the collimator at a reduced exposure level. The high exposure VOI scan data inside the VOI and the low exposure full-field scan data outside the VOI are then combined together to generate composite projection images for image reconstruction. To investigate and quantify scatter reduction, dose saving and image quality improvement in VOI CBCT imaging, a flat panel detector-based bench-top experimental CBCT system was built to measure the dose, the scatter-to-primary ratio (SPR), the image contrast, noise level, the contrast-to-noise ratio (CNR) and the figure of merit (FOM) in the CBCT reconstructed images for two polycarbonate cylinders simulating the small and the large phantoms. The results showed that, compared to the full field CBCT technique, radiation doses for the VOI CBCT technique were reduced by a factor of 1.20 and 1.36 for the small and the large phantoms at the phantom center, respectively, and from 2.7 to 3.0 on the edge of the phantom, respectively. Inside the VOI, the SPRs were substantially reduced by a factor of 6.6 and 10.3 for the small and the large phantoms, the contrast signals were improved by a factor of 1.35 and 1.8, and the noise levels were increased by a factor of 1.27 and 1.6, respectively. As a result, the CNRs were improved by a factor of 1.06 and 1.13 for the small and the large phantoms and the FOM improved by a factor of 1.4 and 1.7, respectively.


international conference of the ieee engineering in medicine and biology society | 2005

Cone Beam Breast CT with a Flat Panel Detector- Simulation, Implementation and Demonstration

Chris C. Shaw; L Chen; Mastafa C. Altunbas; S Tu; Xinming Liu; Tian Peng Wang; Chao Jen Lai; S. Cheenu Kappadath; Y Meng

This paper describes our experiences in the simulation, implementation and application of a flat panel detector based cone beam computed tomography (CT) imaging system for dedicated 3-D breast imaging. In our simulation study, the breast was analytically modeled as a cylinder of breast tissue loosely molded into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients for various types of breast tissue, soft tissue masses and calcifications were estimated for various kVps to generate simulated image signals. Projection images were computed to incorporate X-ray attenuation, geometric magnification, X-ray detection, detector blurring, image pixelization and digitization. Based on the X-ray kVp/filtration used, transmittance through the phantom, detective quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to compute the quantum noise level on a pixel-by-pixel basis for various dose levels at the isocenter. This estimated noise level was then used with a random number generator to generate and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulate detector blurring. Additional 2-D Gaussian filtering was applied to the projection images and tested for improving the detection of soft tissue masses and calcifications in the reconstructed images. Reconstruction was performed using the Feldkamp filtered backprojection algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. With 600 mrads mean glandular dose (MGD) at the phantom center, soft tissue masses as small as 1 mm in diameter could be visualized in a 10 cm diameter 50% glandular 50% adipose or fatter breast tissue, and 2 mm or larger masses were visible in a 100% glandular 0% adipose breast tissue. We have also demonstrated that 0.15 mm or larger calcification could be detected with a 100 mum detector pixel size while 0.2 mm or larger calcifications were visible with a pixel size of 200 mum. Our simulation study has shown that the cone-beam CT breast imaging can provide reasonable good quality and detectability at a dose level similar to that of two views mammography. For imaging experiments, a stationary x-ray source and detector, a stationary gantry, rotating phantom system was constructed to demonstrate cone beam breast CT imaging. Breast specimens from mastectomy were imaged to demonstrate the superior tissue contrast that can be achieved with the cone beam CT technique. Various phantoms were imaged to demonstrate that calcifications as small as 280 mum could be imaged at 80 RVp with a voxel size of 140 mum with an estimated isocenter dose of 1.8 rad

Collaboration


Dive into the Chao Jen Lai's collaboration.

Top Co-Authors

Avatar

Chris C. Shaw

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xinming Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

T Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

T Han

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Y Zhong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gary J. Whitman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Y Shen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Y Yi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

S Ge

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge