Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chao Jiang is active.

Publication


Featured researches published by Chao Jiang.


Brain Behavior and Immunity | 2015

Cerebral ischemia increases bone marrow CD4+CD25+FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system

Jianping Wang; Lie Yu; Chao Jiang; Xiaojie Fu; Xi Liu; Menghan Wang; Chunying Ou; Xiaobing Cui; Chengguang Zhou; Jian Wang

Recent evidence has shown that an increase in CD4(+)CD25(+)FoxP3(+) regulatory T (Treg) cells may contribute to stroke-induced immunosuppression. However, the molecular mechanisms that underlie this increase in Treg cells remain unclear. Here, we used a transient middle cerebral artery occlusion model in mice and specific pathway inhibitors to demonstrate that stroke activates the sympathetic nervous system, which was abolished by 6-OHDA. The consequent activation of β2-adrenergic receptor (AR) signaling increased prostaglandin E2 (PGE2) level in bone marrow. β2-AR antagonist prevented the upregulation of PGE2. PGE2, which acts on prostaglandin E receptor subtype 4 (EP4), upregulated the expression of receptor activator for NF-κB ligand (RANKL) in CD4(+) T cells and mediated the increase in Treg cells in bone marrow. Treatment of MCAO mice with RANKL antagonist OPG inhibited the increase in percent of bone marrow Treg cells. PGE2 also elevated the expression of indoleamine 2,3 dioxygenase in CD11C(+) dendritic cells and promoted the development of functional Treg cells. The effect was neutralized by treatment with indomethacin. Concurrently, stroke reduced production of stromal cell-derived factor-1 (SDF-1) via β3-AR signals in bone marrow but increased the expression of C-X-C chemokine receptor (CXCR) 4 in Treg and other bone marrow cells. Treatment of MCAO mice with β3-AR antagonist SR-59230A reduced the percent of Treg cells in peripheral blood after stroke. The disruption of the CXCR4-SDF-1 axis may facilitate mobilization of Treg cells and other CXCR4(+) cells into peripheral blood. This mechanism could account for the increase in Treg cells, hematopoietic stem cells, and progenitor cells in peripheral blood after stroke. We conclude that cerebral ischemia can increase bone marrow CD4(+)CD25(+)FoxP3(+) regulatory T cells via signals from the sympathetic nervous system.


JCI insight | 2017

Inhibition of neuronal ferroptosis protects hemorrhagic brain

Qian Li; Xiaoning Han; Xi Lan; Yufeng Gao; Jieru Wan; Frederick Durham; Tian Cheng; Jie Yang; Zhongyu Wang; Chao Jiang; Mingyao Ying; Raymond C. Koehler; Brent R. Stockwell; Jian Wang

Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of PTGS2 and its gene product cyclooxygenase-2 ex vivo and in vivo. Moreover, ferrostatin-1 in combination with other inhibitors that target different forms of cell death prevented hemoglobin-induced cell death in OHSCs and human induced pluripotent stem cell-derived neurons better than any inhibitor alone. These results indicate that ferroptosis contributes to neuronal death after ICH, that administration of ferrostatin-1 protects hemorrhagic brain, and that cyclooxygenase-2 could be a biomarker of ferroptosis. The insights gained from this study will advance our knowledge of the post-ICH cell death cascade and be essential for future preclinical studies.


Brain Behavior and Immunity | 2013

Bone marrow mononuclear cells exert long-term neuroprotection in a rat model of ischemic stroke by promoting arteriogenesis and angiogenesis

Jianping Wang; Lie Yu; Chao Jiang; Ming Chen; Chunying Ou; Jian Wang

Transplanted bone marrow-derived mononuclear cells (BMMNCs) can promote arteriogenesis and angiogenesis by incorporating into vascular walls and differentiating into smooth muscle cells (SMCs) and endothelial cells (ECs). Here, we explored whether BMMNCs can enhance arteriogenesis and angiogenesis and promote long-term functional recovery in a rat model of permanent middle cerebral artery occlusion (pMCAO). Sprague-Dawley rats were injected with vehicle or 1×10(7) BMMNCs labeled with BrdU via femoral vein 24 h after induction of pMCAO. Functional deficits were assessed weekly through day 42 after pMCAO, and infarct volume was assessed on day 7. We visualized the angioarchitecture by latex perfusion on days 14 and 42. BMMNC transplantation significantly reduced infarct volume and neurologic functional deficits compared with untreated or vehicle-treated ischemic groups. In BMMNC-treated rats, BrdU-positive cells were widely distributed in the infarct boundary zone, were incorporated into vessel walls, and enhanced the growth of leptomeningeal anastomoses, the circle of Willis, and basilar arteries. BMMNCs were shown to differentiate into SMCs and ECs from day 14 after stroke and preserved vascular repair function for at least 6 weeks. Our data indicate that BMMNCs can significantly enhance arteriogenesis and angiogenesis, reduce infarct volume, and promote long-term functional recovery after pMCAO in rats.


Behavioural Brain Research | 2014

Bone marrow mononuclear cell transplantation promotes therapeutic angiogenesis via upregulation of the VEGF–VEGFR2 signaling pathway in a rat model of vascular dementia

Jianping Wang; Xiaojie Fu; Chao Jiang; Lie Yu; Menghan Wang; Wei Han; Liu Liu; Jian Wang

Bone marrow mononuclear cells (BMMNCs) are important for angiogenesis after stroke. We investigated the effects of BMMNCs on cognitive function, angiogenesis, and the vascular endothelial growth factor (VEGF)-VEGF receptor 2 (VEGFR2) signaling pathway in a rat model of vascular dementia. We transplanted BMMNCs into rats that had undergone permanent bilateral occlusion of the common carotid arteries (2VO) and observed their migration in vivo. On day 28, we assessed cognitive function with the Morris Water Maze test and examined vascular density and white matter damage within the corpus striatum by staining with fluorescein lycopersicon esculentum (tomato) lectin or Luxol fast blue. We evaluated expression of VEGF, rapidly accelerated fibrosarcoma 1 (Raf1), and extracellular-signal-regulated kinases 1 and 2 (ERK1/2) in the ischemic hemisphere by Western blot analysis on day 7 after cell transplantation. Contribution of the VEGF-VEGFR2 signaling pathway was confirmed by using VEGFR2 inhibitor SU5416. BMMNCs penetrated the blood-brain barrier and reached the ischemic cortex and white matter or incorporated into vascular walls of 2VO rats. BMMNC-treated 2VO rats had better learning and memory, higher vascular density, and less white matter damage than did vehicle-treated rats. The beneficial effects of BMMNCs were abolished by pretreatment of rats with SU5416. Protein expression of VEGF and phosphorylated Raf1 and ERK1/2 was also significantly increased by BMMNC treatment, but this upregulation was reversed by SU5416. BMMNCs can enhance angiogenesis, reduce white matter damage, and promote cognitive recovery in 2VO rats. The angiogenic effect may result from upregulation of the VEGF-VEGFR2 signaling pathway.


Molecular Neurobiology | 2017

Progesterone Changes VEGF and BDNF Expression and Promotes Neurogenesis After Ischemic Stroke

Chao Jiang; Fangfang Zuo; Yuejuan Wang; Hong Lu; Qing-Wu Yang; Jian Wang

Studies have shown that progesterone enhances functional recovery after ischemic stroke, but the underlying mechanisms are not completely understood. Therefore, we investigated the effect of progesterone on vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and neurogenesis in a rodent stroke model. Rats underwent permanent middle cerebral artery occlusion (pMCAO) and then received intraperitoneal injections of progesterone (15xa0mg/kg) or vehicle at 1xa0h followed by subcutaneous injections at 6, 24, and 48xa0h. We examined VEGF and BDNF expression by Western blotting and/or immunostaining and microvessel density by lectin immunostaining. Neurogenesis in the subventricular zone was determined by immunostaining of Ki67 and doublecortin, and double BrdU/Nestin immunostaining. We calculated brain water content with the wet-dry weight method on day 3 and assessed neurologic deficits with the modified neurological severity score on days 1, 3, 7, and 14. Progesterone-treated rats showed a significant decrease in VEGF expression, but an increase in BDNF expression, compared with that of vehicle-treated pMCAO rats on day 3 post-occlusion. Progesterone did not alter the microvessel density, but it reduced brain water content compared with that in vehicle-treated rats on day 3 post-occlusion. Progesterone treatment increased the numbers of newly generated neurons in the subventricular zone and doublecortin-positive cells in the peri-infarct region on day 7 post-occlusion. In addition, progesterone improved neurologic function on days 7 and 14 post-occlusion. Our data suggest that the enhancement of endogenous BDNF and subsequent neurogenesis could partially underlie the neuroprotective effects of progesterone.


Behavioural Brain Research | 2013

Comparison of the therapeutic effects of bone marrow mononuclear cells and microglia for permanent cerebral ischemia.

Chao Jiang; Jianping Wang; Lie Yu; Chunying Ou; Xi Liu; Xiaochun Zhao; Jian Wang

In this study we transplanted bone marrow mononuclear cells (BM-MNCs) or microglia into rats that had undergone permanent cerebral ischemia and observed the distribution or morphology of transplanted cells in vivo. In addition, we compared the effects of BM-MNCs and microglia on infarct volume, brain water content, and functional outcome after permanent cerebral ischemia. BM-MNCs and microglia were obtained from femur and brain, respectively, of newborn rats. Adult rats were injected with vehicle or 3 million BM-MNCs or microglia via the tail vein 24h after permanent middle cerebral artery occlusion (pMCAO). The distribution or morphologic characteristics of transplanted BM-MNCs (double stained with BrdU/Cd34 or BrdU/CD45) and microglia (double stained with BrdU/Iba-1) were detected with immunofluorescent staining at 3 or 7 and 14 days after pMCAO. Functional deficits were assessed by the modified neurologic severity score at 1, 3, 7 and 14 days after pMCAO. Brain water content was assessed at 3 days, and infarct volume was determined at 14 days. We observed more BrdU/CD45 and BrdU/Iba-1 double-stained cells than BrdU/CD34 double-stained cells around the infarcted area. Some infused microglia showed the morphology of innate microglia at 7 days after pMCAO, and the number increased at 14 days. BM-MNC-treated rats showed significantly reduced infarct volume and brain water content compared to vehicle- and microglia-treated rats. In addition, BM-MNC treatment reduced neurologic deficit scores compared to those in the other groups. The results provide evidence that infusion of BM-MNCs, but not microglia, is neuroprotective after permanent cerebral ischemia.


Journal of Cerebral Blood Flow and Metabolism | 2017

Cerebroprotection by the neuronal PGE2 receptor EP2 after intracerebral hemorrhage in middle-aged mice.

He Wu; Tao Wu; Xiaoning Han; Jieru Wan; Chao Jiang; Wenwu Chen; Hong Lu; Qing-Wu Yang; Jian Wang

Inflammatory responses mediated by prostaglandins such as PGE2 may contribute to secondary brain injury after intracerebral hemorrhage (ICH). However, the cell-specific signaling by PGE2 receptor EP2 differs depending on whether the neuropathic insult is acute or chronic. Using genetic and pharmacologic approaches, we investigated the role of EP2 receptor in two mouse models of ICH induced by intrastriatal injection of collagenase or autologous arterial whole blood. We used middle-aged male mice to enhance the clinical relevance of the study. EP2 receptor was expressed in neurons but not in astrocytes or microglia after collagenase-induced ICH. Brain injury after collagenase-induced ICH was associated with enhanced cellular and molecular inflammatory responses, oxidative stress, and matrix metalloproteinase (MMP)-2/9 activity. EP2 receptor deletion exacerbated brain injury, brain swelling/edema, neuronal death, and neurobehavioral deficits, whereas EP2 receptor activation by the highly selective agonist AE1-259-01 reversed these outcomes. EP2 receptor deletion also exacerbated brain edema and neurologic deficits in the blood ICH model. These findings support the premise that neuronal EP2 receptor activation by PGE2 protects brain against ICH injury in middle-aged mice through its anti-inflammatory and anti-oxidant effects and anti-MMP-2/9 activity. PGE2/EP2 signaling warrants further investigation for potential use in ICH treatment.


Neurobiology of Aging | 2016

Progesterone exerts neuroprotective effects and improves long-term neurologic outcome after intracerebral hemorrhage in middle-aged mice

Chao Jiang; Fangfang Zuo; Yuejuan Wang; Jieru Wan; Zengjin Yang; Hong Lu; Wenwu Chen; Weidong Zang; Qing-Wu Yang; Jian Wang

In this study, we examined the effect of progesterone on histopathologic and functional outcomes of intracerebral hemorrhage (ICH) in 10- to 12-month-old mice. Progesterone or vehicle was administered by intraperitoneal injection 1 hour after collagenase-induced ICH and then by subcutaneous injections at 6, 24, and 48 hours. Oxidative and nitrosative stress were assayed at 12 hours post-ICH. Injury markers were examined on day 1, and lesion was examined on day 3. Neurologic deficits were examined for 28 days. Progesterone posttreatment reduced lesion volume, brain swelling, edema, and cell degeneration and improved long-term neurologic function. These protective effects were associated with reductions in protein carbonyl formation, protein nitrosylation, and matrix metalloproteinase-9 activity and attenuated cellular and molecular inflammatory responses. Progesterone also reduced vascular endothelial growth factor expression, increased neuronal-specific Na(+)/K(+) ATPase ɑ3 subunit expression, and reduced protein kinase C-dependent Na(+)/K(+) ATPase phosphorylation. Furthermore, progesterone reduced glial scar thickness, myelin loss, brain atrophy, and residual injury volume on day 28 after ICH. With multiple brain targets, progesterone warrants further investigation for its potential use in ICH therapy.


Brain Behavior and Immunity | 2015

CXCR4+CD45− BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice

Jianping Wang; Xi Liu; Hong Lu; Chao Jiang; Xiaobing Cui; Lie Yu; Xiaojie Fu; Qian Li; Jian Wang

Cell-based therapy is considered to be a promising therapeutic strategy for stroke treatment. Although unfractionated bone marrow mononuclear cells (BMMNCs) have been tried in both preclinical and clinical trials, the effective subpopulations need to be identified. In this study, we used fluorescence-activated cell sorting to harvest the CXCR4(+)CD45(+) and CXCR4(+)CD45(-) BMMNC subpopulations from transgenic mice that express enhanced green fluorescent protein. We then allogeneically grafted unfractionated BMMNCs or a subpopulation into mice subjected to transient middle cerebral artery occlusion (tMCAO) and compared the effects on stroke outcomes. We found that CXCR4(+)CD45(-) BMMNCs, but not CXCR4(+)CD45(+) BMMNCs, more effectively reduced infarction volume and neurologic deficits than did unfractionated BMMNCs. Brain tissue from the ischemic hemisphere of mice treated with CXCR4(+)CD45(-) BMMNCs had higher levels of vascular endothelial growth factor and lower levels of TNF-α than did tissue from mice treated with unfractionated BMMNCs. In contrast, CXCR4(+)CD45(+) BMMNCs showed an increase in TNF-α. Additionally, CXCR4(+)CD45(+) and CXCR4(+)CD45(-) populations exhibited more robust migration into the lesion areas and were better able to express cell-specific markers of different linages than were the unfractionated BMMNCs. Endothelial and astrocyte cell markers did not colocalize with eGFP(+) cells in the brains of tMCAO mice that received CXCR4(+)CD45(+) BMMNCs. In vitro, the CXCR4(+)CD45(-) BMMNCs expressed significantly more Oct-4 and Nanog mRNA than did the unfractionated BMMNCs. However, we did not detect gene expression of these two pluripotent markers in CXCR4(+)CD45(+) BMMNCs. Taken together, our study shows for the first time that the CXCR4(+)CD45(-) BMMNC subpopulation is superior to unfractionated BMMNCs in ameliorating cerebral damage in a mouse model of tMCAO and could represent a new therapeutic approach for stroke treatment.


Evidence-based Complementary and Alternative Medicine | 2015

Neuroprotective Effects of Cistanches Herba Therapy on Patients with Moderate Alzheimer’s Disease

Nan Li; Jianping Wang; Jun Ma; Zhiqiang Gu; Chao Jiang; Lie Yu; Xiaojie Fu

Cistanches Herba (CH) is thought to be a “Yang-invigorating” material in traditional Chinese medicine. We evaluated neuroprotective effects of Cistanches Herba on Alzheimers disease (AD) patients. Moderate AD participants were divided into 3 groups: Cistanches Herba capsule (CH, n = 10), Donepezil tablet (DON, n = 8), and control group without treatment (n = 6). We assessed efficacy by MMSE and ADAS-cog, and investigated the volume changes of hippocampus by 1.5u2009T MRI scans. Protein, mRNA levels, and secretions of total-tau (T-tau), tumor necrosis factor-α (TNF-α), and interleukin- (IL) 1β (IL-1β) in cerebrospinal fluid (CSF) were detected by Western blot, RT-PCR, and ELISA. The scores showed statistical difference after 48 weeks of treatment compared to control group. Meanwhile, volume changes of hippocampus were slight in drug treatment groups but distinct in control group; the levels of T-tau, TNF-α, and IL-1β were decreased compared to those in control group. Cistanches Herba could improve cognitive and independent living ability of moderate AD patients, slow down volume changes of hippocampus, and reduce the levels of T-tau, TNF-α, and IL-1β. It suggested that Cistanches Herba had potential neuroprotective effects for moderate AD.

Collaboration


Dive into the Chao Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lie Yu

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Wang

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hong Lu

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jieru Wan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing-Wu Yang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xi Liu

Zhengzhou University

View shared research outputs
Researchain Logo
Decentralizing Knowledge