Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chao-Liang Wu is active.

Publication


Featured researches published by Chao-Liang Wu.


Cancer Science | 2008

Increased apoptotic potential and dose‐enhancing effect of gold nanoparticles in combination with single‐dose clinical electron beams on tumor‐bearing mice

Meng Ya Chang; Ai-Li Shiau; Yu Hung Chen; Chih-Jui Chang; Helen H.W. Chen; Chao-Liang Wu

High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose‐enhancing effect and apoptotic potential of gold nanoparticles in combination with single‐dose clinical electron beams on B16F10 melanoma tumor‐bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P = 0.02). Using a B16F10 tumor‐bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P < 0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P < 0.05). Knowing that radiation‐induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single‐dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (Cancer Sci 2008; 99: 1479–1484)


Cancer Research | 2008

Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells.

Chao-Ching Chang; Gia-Shing Shieh; Pensee Wu; Chia-Cheng Lin; Ai-Li Shiau; Chao-Liang Wu

Cancer and embryonic stem cells exhibit similar behavior, including immortal, undifferentiated, and invasive activities. Here, we show that in clinical samples bladder tumors with intense expression of stem cell marker Oct-3/4 (also known as POU5F1) are associated with further disease progression, greater metastasis, and shorter cancer-related survival compared with those with moderate and low expressions. Expression of Oct-3/4 is detected in human bladder transitional cell carcinoma samples and cell lines. Overexpression of Oct-3/4 enhances, whereas knockdown of Oct-3/4 expression by RNA interference reduces, migration and invasion of bladder cancer cells. Oct-3/4 can up-regulate fibroblast growth factor-4 and matrix metalloproteinase-2 (MMP-2), MMP-9, and MMP-13 production, which may contribute to tumor metastasis. Finally, we show that Ad5WS4, an E1B-55 kD-deleted adenovirus driven by the Oct-3/4 promoter, exerts potent antitumor activity against bladder cancer in a syngeneic murine tumor model. Therefore, our results implicate that Oct-3/4 may be useful as a novel tumor biological and prognostic marker and probably as a potential therapeutic target for bladder cancer.


The Journal of Physiology | 2009

Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I

Yu-Fan Liu; Hsiun-ing Chen; Chao-Liang Wu; Yu-Min Kuo; Lung Yu; A-Min Huang; Fong-Sen Wu; Jih Ing Chuang; Chauying J. Jen

Chronic exercise has been reported to improve cognitive function. However, whether and how different types of exercise affect various learning and memory tasks remain uncertain. To address this issue, male BALB/c mice were trained for 4 weeks under two different exercise protocols: moderate treadmill running or voluntary wheel running. After exercise training, their spatial memory and aversive memory were evaluated by a Morris water maze and by one‐trial passive avoidance (PA), respectively. Levels of neural plasticity‐related proteins, i.e. brain‐derived neurotrophic factor (BDNF), tropomyosin‐related kinase B (TrkB) and synaptotagmin I (Syt I), in hippocampus and amygdala were determined by ELISA or immunoblotting. Finally, the functional roles of these proteins in the basolateral amygdala were verified by locally blocking them with K252a (a TrkB kinase inhibitor), or lentivirus expressing Syt I shRNA. We found that (1) although both moderate treadmill running and wheel running improved the Morris water maze performance, only the former improved PA performance; (2) likewise, both exercise protocols upregulated the BDNF–TrkB pathway and Syt I in the hippocampus, whereas only treadmill exercise upregulated their expression levels in the amygdala; (3) local injection of K252a abolished the treadmill exercise‐facilitated PA performance and upregulation of amygdalar TrkB and Syt I; and (4) local administration of Syt I shRNA abolished the treadmill exercise‐facilitated PA performance and upregulation of amygdalar Syt I. Therefore, our results support the notion that different forms of exercise induce neuroplasticity changes in different brain regions, and thus exert diverse effects on various forms of learning and memory.


Autophagy | 2009

Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells.

Keng Fu Hsu; Chao-Liang Wu; Soon Cen Huang; Ching Ming Wu; Jenn Ren Hsiao; Yi Te Yo; Yu Hung Chen; Ai-Li Shiau; Cheng Yang Chou

Cathepsins have long been considered as housekeeping molecules. However, specific functions have also been attributed to each one of these lysosomal proteases. Squamous cell carcinoma antigen (SCCA) 1, widely expressed in various uterine cervical cells, is an endogenous cathepsin (cat) L inhibitor. In this study, we investigated whether the cat L-SCCA 1 lysosomal pathway and autophagy were involved in resveratrol (RSV)-induced cytotoxicity in cervical cancer cells. RSV induced GFP-LC3 aggregation as well as increased the presence of LC3-II and autophagosomes as was revealed by electron microscopy in cervical cancer cells. Prolonged treatment of RSV induced cytosolic translocation of cytochrome c, caspase 3 activation, and apoptotic cell death. This apoptotic effect was abrogated by trans-epoxysuccinyl- L-leucylamido - (4-guanidino)butane, an inhibitor of cat B and L, but not by pepstatin A, an inhibitor of cat D. As cervical cancer cells express little cat B, we further studied the role of cat L. RSV induced dissipation of the lysosomal membrane permeability (LMP), leakage and increased cytosolic expression and activity of cat L. Inhibition of cat L by small interference RNA (siRNA) protected cells from RSV-induced cytotoxicity. In contrast, inhibition of SCCA 1 by siRNA promoted RSV-induced cytotoxicity. Inhibition of autophagic response by wormannin (WT) or asparagine (ASP) resulted in decreased early LC3-II formation, reduced LMP, and abolishment of the increase in RSV-induced cell death. In conclusion, we have identified a new cytotoxic mechanism in which the lysosomal enzyme cat L acts as a death signal integrator in cervical cancer cells. Furthermore, SCCA 1 may play an anti-apoptotic role through anti-cat L activity.


British Journal of Cancer | 2003

Constitutive activation of STAT3 and STAT5 is present in the majority of nasopharyngeal carcinoma and correlates with better prognosis

Jenn Ren Hsiao; Ying-Tai Jin; Sen Tien Tsai; Ai-Li Shiau; Chao-Liang Wu; Wu-Chou Su

Constitutively activated signal transducers and activators of transcription (STAT) factors, in particular STAT1, STAT3 and STAT5, have been demonstrated in a variety of human tumours and cancer cell lines. However, data on the expression of these STATs in nasopharyngeal carcinoma (NPC) are limited. In this study, the expression patterns of STAT1, STAT3 and STAT5 were immunohistochemically examined on the archival specimens from 61 patients with NPC. Staining results of each STATs were then correlated with the clinical parameters and prognosis of these patients. The results showed that constitutive activation of STAT3 and STAT5 was detected in the majority, 70.5 and 62.3%, respectively, of the 61 tumour specimens. Furthermore, coexpression of activated STAT3 and STAT5 was found in 54.1% of the specimens. In contrast, constitutive activated STAT1 could only be detected in 8 (13.1%) cases. Surprisingly, following radiotherapy, patients with constitutive STAT5 activation, or activation of both STAT3 and STAT5, had better disease-free survival and overall survival than those without activated STAT5. To our knowledge, this is the first report providing the overall expression patterns and prognostic significance of specific STATs in NPC.


Journal of Agricultural and Food Chemistry | 2009

Licorice and Licochalcone-A Induce Autophagy in LNCaP Prostate Cancer Cells by Suppression of Bcl-2 Expression and the mTOR Pathway

Yi-Te Yo; Gia-Shing Shieh; Keng Fu Hsu; Chao-Liang Wu; Ai-Li Shiau

Licorice is a common Chinese medicinal herb with antitumor activity. Some components in licorice root have been shown to induce cell cycle arrest or apoptosis in cancer cells. This paper demonstrates for the first time that licorice Glycyrrhiza glabra and its component licochalcone-A (LA) can induce autophagy in addition to apoptosis in human LNCaP prostate cancer cells. Exposure of cells to licorice or LA resulted in several confirmed characteristics of autophagy, including the appearance of autophagic vacuoles revealed by monodansylcadaverine (MDC) staining, formation of acidic vesicular organelles (AVOs), and autophagosome membrane association of microtubule-associated protein 1 light chain 3 (LC3) characterized by cleavage of LC3 and its punctuate redistribution, as well as ultrastructural observation of autophagic vacuoles by transmission electron microscopy. Autophagy induction was accompanied by down-regulation of Bcl-2 and inhibition of the mammalian target of rapamycin (mTOR) pathway. In summary, licorice can induce caspase-dependent and autophagy-related cell death in LNCaP cells.


Cancer Gene Therapy | 2005

Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model

Che-Hsin Lee; Chao-Liang Wu; Ai-Li Shiau

Some anaerobic and facultative anaerobic bacteria have been used experimentally as anticancer agents because of their selective growth in the hypoxia regions of solid tumors after systemic administration. We have previously shown the feasibility of using attenuated Salmonella choleraesuis as a gene delivery vector. In this study, we exploited S. choleraesuis carrying thrombospondin-1 (TSP-1) gene for treating primary melanoma and experimental pulmonary metastasis in the syngeneic murine B16F10 melanoma model. Systemic administration of S. choleraesuis allowed targeted gene delivery to tumors. The bacteria accumulated preferentially in tumors over livers and spleens at ratios ranging from 1000:1 to 10,000:1. The level of transgene expression via S. choleraesuis-mediated gene transfer in tumors could reach more than 1800-fold higher than in livers and spleens. Notably, bacterial accumulation was also observed in the lungs with metastatic nodules, but not in healthy lungs. When administered into mice bearing subcutaneous or pulmonary metastatic melanomas, S. choleraesuis carrying TSP-1 gene significantly inhibited tumor growth and enhanced survival of the mice. Immunohistochemical studies in the tumors from these mice displayed decreased intratumoral microvessel density. Taken together, these findings suggest that TSP-1 gene therapy delivered by S. choleraesuis may be effective for the treatment of primary as well as metastatic melanomas.


Arthritis & Rheumatism | 2012

Brief Report: Amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223

Yuan-Tsung Li; Shih-Yao Chen; Chrong-Reen Wang; Ming Fei Liu; Chi-Chen Lin; I-Ming Jou; Ai-Li Shiau; Chao-Liang Wu

OBJECTIVE MicroRNA (miRNA) plays a role in autoimmune diseases. MiRNA-223 (miR-223) is up-regulated in patients with rheumatoid arthritis (RA) and is involved in osteoclastogenesis, which contributes to erosive disease. The aim of this study was to test the feasibility of using lentiviral vectors expressing the miR-223 target sequence (miR-223T) to suppress miR-223 activity as a therapeutic strategy in a mouse model of collagen-induced arthritis (CIA). METHODS Levels of miR-223 in the synovial tissue of patients with RA or osteoarthritis (OA), as well as in the ankle joints of mice with CIA, were determined by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Lentiviral vectors expressing miR-223T (LVmiR-223T) or luciferase short hairpin RNA (LVshLuc) as a control vector were injected intraperitoneally into mice with CIA. Treatment responses and disease-related bone mineral density were monitored. Levels of nuclear factor 1A (NF-1A), a direct target of miR-223, and macrophage colony-stimulating factor receptor (M-CSFR), which is critical for osteoclastogenesis, were measured by immunohistochemistry and quantitative RT-PCR. Osteoclasts were assessed by tartrate-resistant acid phosphatase staining. RESULTS MiR-223 expression was significantly higher in the synovium of RA patients and in the ankle joints of mice with CIA as compared to OA patients and normal mice. LVmiR-223T treatment reduced the arthritis score, histologic score, miR-223 expression, osteoclastogenesis, and bone erosion in mice with CIA. Down-regulation of miR-223 with concomitant increases in NF-1A levels and decreases in M-CSFR levels was detected in the synovium of LVmiR-223T-treated mice. CONCLUSION This study is the first to demonstrate that lentivirus-mediated silencing of miR-223 can reduce disease severity of experimental arthritis. Furthermore, our results indicate that inhibition of miR-223 activity should be further explored as a therapeutic strategy in RA.


Journal of Gene Medicine | 2004

Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models.

Che-Hsin Lee; Chao-Liang Wu; Ai-Li Shiau

Some anaerobic and facultatively anaerobic bacteria have been used experimentally as anticancer agents because of their selective growth in tumors. In this study, we exploited attenuated Salmonella choleraesuis as a tumoricidal agent and a vector to deliver the endostatin gene for tumor‐targeted gene therapy.


Microbiology and Immunology | 1998

The inhibitory effect of Staphylococcus epidermidis slime on the phagocytosis of murine peritoneal macrophages is interferon-independent.

Ai-Li Shiau; Chao-Liang Wu

The extracellular slime produced by Staphylococcus epidermidis has been shown to interfere with several human neutrophil functions in vitro, such as chemotaxis, degranulation and phagocytosis. Slime production has been suggested as a useful marker for clinically significant infections with coagulase‐negative Staphylococcus. Since the main role of macrophages in defense mechanisms is phagocytosis, the effect of slime on the phagocytic activity of macrophages was investigated. The phagocytic activity of murine peritoneal macrophages treated with slime in vitro decreased in a dose‐dependent fashion. A similar decrease was also observed in macrophages isolated from mice that had previously received intraperitoneal injection of slime. To investigate whether interferon also plays a role in this process, mice were treated with interferon or an interferon inducer, polyinosinic‐polycytidylic acid (poly I:C), together with slime before macrophage isolation. The slime‐suppressed phagocytic activity of macrophages was partially relieved by both agents, and the recovery effect of poly I:C in slime‐suppressed phagocytosis of macrophages in vivo might be attributed to the increased interferon level in peritoneal fluid and sera. However, when slime was given to poly I:C‐pretreated mice, the phagocytic activity remained suppressed. Thus, it appears that slime is able to suppress the phagocytic activity of macrophages regardless of the state of macrophage activation by poly I:C. The results suggest that the inhibition of phagocytosis by S. epidermidis slime may be independent from the activation of interferon.

Collaboration


Dive into the Chao-Liang Wu's collaboration.

Top Co-Authors

Avatar

Ai-Li Shiau

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Chrong-Reen Wang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

I-Ming Jou

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Shih-Yao Chen

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Che-Hsin Lee

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Tzong-Shin Tzai

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Gia-Shing Shieh

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gia Shing Shieh

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Jeng-Long Hsieh

Chung Hwa University of Medical Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge