Chao-Yang Kuo
James Cook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chao-Yang Kuo.
Nature | 2017
Terry P. Hughes; James T. Kerry; Mariana Álvarez-Noriega; Jorge G. Álvarez-Romero; Kristen D. Anderson; Andrew Baird; Russell C. Babcock; Maria Beger; David R. Bellwood; Ray Berkelmans; Tom C. L. Bridge; Ian R. Butler; Maria Byrne; Neal E. Cantin; Steeve Comeau; Sean R. Connolly; Graeme S. Cumming; Steven J. Dalton; Guillermo Diaz-Pulido; C. Mark Eakin; Will F. Figueira; James P. Gilmour; Hugo B. Harrison; Scott F. Heron; Andrew S. Hoey; Jean Paul A. Hobbs; Mia O. Hoogenboom; Emma V. Kennedy; Chao-Yang Kuo; Janice M. Lough
During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.
Scientific Data | 2016
Joshua S. Madin; Kristen D. Anderson; Magnus Heide Andreasen; Tom C. L. Bridge; Stephen D. Cairns; Sean R. Connolly; Emily S. Darling; Marcela Diaz; Daniel S. Falster; Erik C. Franklin; Ruth D. Gates; Mia O. Hoogenboom; Danwei Huang; Sally A. Keith; Matthew A. Kosnik; Chao-Yang Kuo; Janice M. Lough; Catherine E. Lovelock; Osmar J. Luiz; Julieta C. Martinelli; Toni Mizerek; John M. Pandolfi; Xavier Pochon; Morgan S. Pratchett; Hollie M. Putnam; T. Edward Roberts; Michael Stat; Carden C. Wallace; Elizabeth Widman; Andrew Baird
Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.
PeerJ | 2014
Shashank Keshavmurthy; Pei-Jie Meng; Jih-Terng Wang; Chao-Yang Kuo; Sung-Yin Yang; Chia-Min Hsu; Chai-Hsia Gan; Chang-Feng Dai; Chaolun Allen Chen
Climate change has led to a decline in the health of corals and coral reefs around the world. Studies have shown that, while some corals can cope with natural and anthropogenic stressors either through resistance mechanisms of coral hosts or through sustainable relationships with Symbiodinium clades or types, many coral species cannot. Here, we show that the corals present in a reef in southern Taiwan, and exposed to long-term elevated seawater temperatures due to the presence of a nuclear power plant outlet (NPP OL), are unique in terms of species and associated Symbiodinium types. At shallow depths (<3 m), eleven coral genera elsewhere in Kenting predominantly found with Symbiodinium types C1 and C3 (stress sensitive) were instead hosting Symbiodinium type D1a (stress tolerant) or a mixture of Symbiodinium type C1/C3/C21a/C15 and Symbiodinium type D1a. Of the 16 coral genera that dominate the local reefs, two that are apparently unable to associate with Symbiodinium type D1a are not present at NPP OL at depths of <3 m. Two other genera present at NPP OL and other locations host a specific type of Symbiodinium type C15. These data imply that coral assemblages may have the capacity to maintain their presence at the generic level against long-term disturbances such as elevated seawater temperatures by acclimatization through successful association with a stress-tolerant Symbiodinium over time. However, at the community level it comes at the cost of some coral genera being lost, suggesting that species unable to associate with a stress-tolerant Symbiodinium are likely to become extinct locally and unfavorable shifts in coral communities are likely to occur under the impact of climate change.
PLOS ONE | 2012
Chao-Yang Kuo; Yeong Shyan Yuen; Pei-Jie Meng; Ping-Ho Ho; Jih-Terng Wang; Pi-Jen Liu; Yang-Chi Chang; Chang-Feng Dai; Tung-Yung Fan; Hsing-Juh Lin; Andrew Baird; Chaolun Allen Chen
Recurrent disturbances can have a critical effect on the structure and function of coral reef communities. In this study, long-term changes were examined in the hard coral community at Wanlitung, in southern Taiwan, between 1985 and 2010. In this 26 year interval, the reef has experienced repeated disturbances that include six typhoons and two coral-bleaching events. The frequency of disturbance has meant that species susceptible to disturbance, such as those in the genus Acropora and Montipora have almost disappeared from the reef. Indeed, almost all hard coral species have declined in abundance, with the result that total hard coral cover in 2010 (17.7%) was less than half what it was in 1985 (47.5%). In addition, macro-algal cover has increased from 11.3% in 2003 to 28.5% in 2010. The frequency of disturbance combined with possible chronic influence of a growing human population mean that a diverse reef assemblage is unlikely to persist on this reef into the future.
PLOS ONE | 2014
Chia-Min Hsu; Stéphane De Palmas; Chao-Yang Kuo; Vianney Denis; Chaolun Allen Chen
The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm2) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies.
Scientific Reports | 2017
Vianney Denis; Lauriane Ribas-Deulofeu; Nicolas Sturaro; Chao-Yang Kuo; Chaolun Allen Chen
Colony morphological features is among the best predictor of the scleractinian coral’s function in reef ecosystems. However, morphological traits are categorical and to convert this information into a quantitative value as well as estimate their influence on ecosystem process remain a challenge. Here, we propose a trait-based approach to quantify morphological diversity and assess the structural complexity of the habitat provided by corals. We used a previously published dataset that is related to a bleaching event that affected the coral reef off Tikus Island in Indonesia in 1983. We found clear signs of recovery of the coral assemblage’s complexity toward pre El Niño conditions five years after the event. Independent of the change observed in species richness, this return in structural complexity was accompanied by a global decrease in species number associated with each particular morphological entity (Functional Redundancy) and an increase in the number of single-species entities (Functional Vulnerability). Together with species loss, we show an overall functional erosion of the coral assemblage and suggest that the role of the coral reef habitat could be strongly imperiled under repeated or synergistic disturbances. This approach offers an opportunity for a better understanding of coral responses to natural and anthropogenic disturbances.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Mike McWilliam; Mia O. Hoogenboom; Andrew Baird; Chao-Yang Kuo; Joshua S. Madin; Terry P. Hughes
Significance The wide variety of functional trait combinations among the world’s coral faunas can be represented by just a few dimensions of variation. The diversity of coral traits among these dimensions is consistently high along Pacific and Indian Ocean diversity gradients, despite a threefold decline in species richness (from approximately 600 to 200 species). Functional redundancy, defined as multiple species sharing similar arrays of traits, is highest in the central Indo-Pacific biodiversity hotspot. While these Indo-Pacific provinces are globally important reserves of coral reef resilience and function, peripheral species-poor regions are potentially more vulnerable to functional collapse, as indicated by a critical lack of redundancy among species and the reduced capacity for similar species to respond differently to chronic or acute stressors. Corals are major contributors to a range of key ecosystem functions on tropical reefs, including calcification, photosynthesis, nutrient cycling, and the provision of habitat structure. The abundance of corals is declining at multiple scales, and the species composition of assemblages is responding to escalating human pressures, including anthropogenic global warming. An urgent challenge is to understand the functional consequences of these shifts in abundance and composition in different biogeographical contexts. While global patterns of coral species richness are well known, the biogeography of coral functions in provinces and domains with high and low redundancy is poorly understood. Here, we quantify the functional traits of all currently recognized zooxanthellate coral species (n = 821) in both the Indo-Pacific and Atlantic domains to examine the relationships between species richness and the diversity and redundancy of functional trait space. We find that trait diversity is remarkably conserved (>75% of the global total) along latitudinal and longitudinal gradients in species richness, falling away only in species-poor provinces (n < 200), such as the Persian Gulf (52% of the global total), Hawaii (37%), the Caribbean (26%), and the East-Pacific (20%), where redundancy is also diminished. In the more species-poor provinces, large and ecologically important areas of trait space are empty, or occupied by just a few, highly distinctive species. These striking biogeographical differences in redundancy could affect the resilience of critical reef functions and highlight the vulnerability of relatively depauperate, peripheral locations, which are often a low priority for targeted conservation efforts.
PLOS ONE | 2015
Jih-Terng Wang; Chia-Min Hsu; Chao-Yang Kuo; Pei-Jie Meng; Shuh-Ji Kao; Chaolun Allen Chen
Terpios hoshinota, an encrusting cyanosponge, is known as a strong substrate competitor of reef-building corals that kills encountered coral by overgrowth. Terpios outbreaks cause significant declines in living coral cover in Indo-Pacific coral reefs, with the damage usually lasting for decades. Recent studies show that there are morphological transformations at a sponge’s growth front when confronting corals. Whether these morphological transformations at coral contacts are involved with physiological outperformance (e.g., higher metabolic activity or nutritional status) over other portions of Terpios remains equivocal. In this study, we compared the indicators of photosynthetic capability and nitrogen status of a sponge-cyanobacteria association at proximal, middle, and distal portions of opponent corals. Terpios tissues in contact with corals displayed significant increases in photosynthetic oxygen production (ca. 61%), the δ13C value (ca. 4%), free proteinogenic amino acid content (ca. 85%), and Gln/Glu ratio (ca. 115%) compared to middle and distal parts of the sponge. In contrast, the maximum quantum yield (Fv/Fm), which is the indicator usually used to represent the integrity of photosystem II, of cyanobacteria photosynthesis was low (0.256~0.319) and showed an inverse trend of higher values in the distal portion of the sponge that might be due to high and variable levels of cyanobacterial phycocyanin. The inconsistent results between photosynthetic oxygen production and Fv/Fm values indicated that maximum quantum yields might not be a suitable indicator to represent the photosynthetic function of the Terpios-cyanobacteria association. Our data conclusively suggest that Terpios hoshinota competes with opponent corals not only by the morphological transformation of the sponge-cyanobacteria association but also by physiological outperformance in accumulating resources for the battle.
Coral Reefs | 2015
Fu-Wen Kuo; Chao-Yang Kuo; Tung-Yung Fan; Ming-Chin Liu; Chaolun Allen Chen
The rabbitfishes, Siganus spp., are generally classified as herbivores. A recent study shows that closely related Siganus species can express distinct ecosystem functions with one as a grazer of reef turf algae and the other primarily a grazer of off-reef detrital aggregates (Fox et al. 2009), suggesting that the herbivorous role of rabbitfishes on reefs might not be as uniform as previously thought. In August 2014, at the Hobihu Marine Protected Area (MPA), Kenting National Park (21 56.30¢N; 120 44.75¢E), southern Taiwan, where herbivorous fishes are dominated by Siganus fuscescens and the benthic community is composed of soft corals including Sinularia, Lobophytum, and Sarcophyton, we observed schools of S. fuscescens foraging at the tops of soft corals and grazing on turf algae growing on the coral surfaces (Fig. 1; Electronic Supplementary Materials, ESM 1). One of the S. fuscescens schools (ca. 35 individuals) continued to bite Sarcophyton colonies after the surface turf algae were cropped (Fig. 2; ESM 2), leaving distinct scars on coral surfaces (Fig. 3; ESM 2). Our observations indicate that chemical toxins and sclerites (van Alstyne et al. 1994) did not deter S. fuscescens from feeding on Sarcophyton and provide evidence that the feeding habits of some coral reef-associated fishes might be oversimplified and should be validated on a speciesby-species basis (Bellwood et al. 2006; Fox et al. 2009).
PeerJ | 2017
Shashank Keshavmurthy; Kuo-Hsun Tang; Chia-Min Hsu; Chai-Hsia Gan; Chao-Yang Kuo; Keryea Soong; Hong-Nong Chou; Chaolun Allen Chen
Dongsha Atoll (also known as Pratas) in Taiwan is the northernmost atoll in the South China Sea and a designated marine national park since 2007. The marine park’s scope of protection covers the bio-resources of its waters in addition to uplands, so it is important to have data logging information and analyses of marine flora and fauna, including their physiology, ecology, and genetics. As part of this effort, we investigated Symbiodinium associations in scleractinian corals from Dongsha Atoll through surveys carried out at two depth ranges (shallow, 1–5 m; and deep, 10–15 m) in 2009 and during a bleaching event in 2010. Symbiodinium composition was assessed using restriction fragment length polymorphism (RFLP) of 28S nuclear large subunit ribosomal DNA (nlsrDNA). Our results showed that the 796 coral samples from seven families and 20 genera collected in 2009 and 132 coral samples from seven families and 12 genera collected in 2010 were associated with Symbiodinium C, D and C+D. Occurrence of clade D in shallow water (24.5%) was higher compared to deep (14.9%). Due to a bleaching event in 2010, up to 80% of coral species associated with Symbiodinium C underwent moderate to severe bleaching. Using the fine resolution technique of denaturing gradient gel electrophoresis (DGGE) of internal transcribed spacer 2 (ITS2) in 175 randomly selected coral samples, from 2009 and 2010, eight Symbiodinium C types and two Symbiodinium D types were detected. This study is the first baseline survey on Symbiodinium associations in the corals of Dongsha Atoll in the South China Sea, and it shows the dominance of Symbiodinium clade C in the population.