Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chao Yie Yang is active.

Publication


Featured researches published by Chao Yie Yang.


Journal of Medicinal Chemistry | 2011

A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment.

Qian Cai; Haiying Sun; Yuefeng Peng; Jianfeng Lu; Zaneta Nikolovska-Coleska; Donna McEachern; Liu Liu; Su Qiu; Chao Yie Yang; Rebecca Miller; Han Yi; Tao Zhang; Duxin Sun; Sanmao Kang; Ming Guo; Lance Leopold; Dajun Yang; Shaomeng Wang

We report the discovery and characterization of SM-406 (compound 2), a potent and orally bioavailable Smac mimetic and an antagonist of the inhibitor of apoptosis proteins (IAPs). This compound binds to XIAP, cIAP1, and cIAP2 proteins with K(i) of 66.4, 1.9, and 5.1 nM, respectively. Compound 2 effectively antagonizes XIAP BIR3 protein in a cell-free functional assay, induces rapid degradation of cellular cIAP1 protein, and inhibits cancer cell growth in various human cancer cell lines. It has good oral bioavailability in mice, rats, non-human primates, and dogs, is highly effective in induction of apoptosis in xenograft tumors, and is capable of complete inhibition of tumor growth. Compound 2 is currently in phase I clinical trials for the treatment of human cancer.


Accounts of Chemical Research | 2008

Design of Small-Molecule Peptidic and Nonpeptidic Smac Mimetics

Haiying Sun; Zaneta Nikolovska-Coleska; Chao Yie Yang; Dongguang Qian; Jianfeng Lu; Su Qiu; Longchuan Bai; Yuefeng Peng; Qian Cai; Shaomeng Wang

Smac/DIABLO is a protein released from mitochondria into the cytosol in response to apoptotic stimuli. Smac promotes apoptosis at least in part through antagonizing inhibitor of apoptosis proteins (IAPs), including XIAP, cIAP-1, and cIAP-2. Smac interacts with these IAPs via its N-terminal AVPI binding motif. There has been an enormous interest in academic laboratories and pharmaceutical companies in the design of small-molecule Smac mimetics as potential anticancer agents. This task is particularly challenging because it involves targeting protein-protein interactions. Nevertheless, intense research has now generated potent, specific, cell-permeable small-molecule peptidomimetics and nonpeptidic mimetics. To date, two types of Smac mimetics have been reported, namely, monovalent and bivalent Smac mimetics. The monovalent compounds are designed to mimic the binding of a single AVPI binding motif to IAP proteins, whereas the bivalent compounds contain two AVPI binding motif mimetics tethered together through a linker. Studies from several groups have clearly demonstrated that both monovalent and bivalent Smac mimetics not only enhance the antitumor activity of other anticancer agents but also can induce apoptosis as single agents in a subset of human cancer cell lines in vitro and are capable of achieving tumor regression in animal models of human cancer. In general, bivalent Smac mimetics are 100-1000 times more potent than their corresponding monovalent Smac mimetics in induction of apoptosis in tumor cells. However, properly designed monovalent Smac mimetics can achieve oral bioavailability and may have major advantages over bivalent Smac mimetics as potential drug candidates. In-depth insights on the molecular mechanism of action of Smac mimetics have been provided by several independent studies. It was shown that Smac mimetics induce apoptosis in tumor cells by targeting cIAP-1/-2 for the rapid degradation of these proteins, which leads to activation of nuclear factor kappaB (NF-kappaB) and production and secretion of tumor necrosis factor alpha (TNFalpha). TNFalpha promotes formation of a receptor-interacting serine-threonine kinase 1 (RIPK1)-dependent caspase-8-activating complex, leading to activation of caspase-8 and -3/-7 and ultimately to apoptosis. For the most efficient apoptosis induction, Smac mimetics also need to remove the inhibition of XIAP to caspase-3/-7. Hence, Smac mimetics induce apoptosis in tumor cells by targeting not only cIAP-1/-2 but also XIAP. The employment of potent, cell-permeable, small-molecule Smac mimetics has yielded important insights into the regulation of apoptosis by IAP proteins. To date, at least one Smac mimetic has been advanced into clinical development. Several other Smac mimetics are in an advanced preclinical development stage and are expected to enter human clinical testing for the treatment of cancer in the near future.


Journal of Chemical Information and Modeling | 2007

Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes.

Yipin Lu; Renxiao Wang; Chao Yie Yang; Shaomeng Wang

We have performed a comprehensive analysis of water molecules at the protein-ligand interfaces observed in 392 high-resolution crystal structures. There are a total of 1829 ligand-bound water molecules in these 392 complexes; 18% are surface water molecules, and 72% are interfacial water molecules. The number of ligand-bound water molecules in each complex structure ranges from 0 to 21 and has an average of 4.6. Of these interfacial water molecules, 76% are considered to be bridging water molecules, characterized by having polar interactions with both ligand and protein atoms. Among a number of factors that may influence the number of ligand-bound water molecules, the polar van der Waals (vdw) surface area of ligands has the highest Pearson linear correlation coefficient of 0.63. Our regression analysis predicted that one more ligand-bound water molecule is expected for every additional 24 A2 in the polar vdw surface area of the ligand. In contrast to the observation that the resolution is the primary factor influencing the number of water molecules in crystallographic models of proteins, we found that there is only a weak relationship between the number of ligand-bound water molecules and the resolution of the crystal structures. An analysis of the isotropic B factors of buried ligand-bound water molecules suggested that, when water molecules have fewer than two polar interactions with the protein-ligand complex, they are more mobile than protein atoms in the crystal structures; when they have more than three polar interactions, they are significantly less mobile than protein atoms.


Journal of Chemical Information and Modeling | 2011

CSAR Benchmark Exercise of 2010: Combined Evaluation Across All Submitted Scoring Functions

Richard D. Smith; James B. Dunbar; Peter M. U. Ung; Emilio Xavier Esposito; Chao Yie Yang; Shaomeng Wang; Heather A. Carlson

As part of the Community Structure-Activity Resource (CSAR) center, a set of 343 high-quality, protein–ligand crystal structures were assembled with experimentally determined Kd or Ki information from the literature. We encouraged the community to score the crystallographic poses of the complexes by any method of their choice. The goal of the exercise was to (1) evaluate the current ability of the field to predict activity from structure and (2) investigate the properties of the complexes and methods that appear to hinder scoring. A total of 19 different methods were submitted with numerous parameter variations for a total of 64 sets of scores from 16 participating groups. Linear regression and nonparametric tests were used to correlate scores to the experimental values. Correlation to experiment for the various methods ranged R2 = 0.58–0.12, Spearman ρ = 0.74–0.37, Kendall τ = 0.55–0.25, and median unsigned error = 1.00–1.68 pKd units. All types of scoring functions—force field based, knowledge based, and empirical—had examples with high and low correlation, showing no bias/advantage for any particular approach. The data across all the participants were combined to identify 63 complexes that were poorly scored across the majority of the scoring methods and 123 complexes that were scored well across the majority. The two sets were compared using a Wilcoxon rank-sum test to assess any significant difference in the distributions of >400 physicochemical properties of the ligands and the proteins. Poorly scored complexes were found to have ligands that were the same size as those in well-scored complexes, but hydrogen bonding and torsional strain were significantly different. These comparisons point to a need for CSAR to develop data sets of congeneric series with a range of hydrogen-bonding and hydrophobic characteristics and a range of rotatable bonds.


Journal of Chemical Information and Modeling | 2011

CSAR Benchmark Exercise of 2010: Selection of the Protein–Ligand Complexes

James B. Dunbar; Richard D. Smith; Chao Yie Yang; Peter M. U. Ung; Katrina W. Lexa; Nickolay A. Khazanov; Jeanne A. Stuckey; Shaomeng Wang; Heather A. Carlson

A major goal in drug design is the improvement of computational methods for docking and scoring. The Community Structure Activity Resource (CSAR) aims to collect available data from industry and academia which may be used for this purpose (www.csardock.org). Also, CSAR is charged with organizing community-wide exercises based on the collected data. The first of these exercises was aimed to gauge the overall state of docking and scoring, using a large and diverse data set of protein–ligand complexes. Participants were asked to calculate the affinity of the complexes as provided and then recalculate with changes which may improve their specific method. This first data set was selected from existing PDB entries which had binding data (Kd or Ki) in Binding MOAD, augmented with entries from PDBbind. The final data set contains 343 diverse protein–ligand complexes and spans 14 pKd. Sixteen proteins have three or more complexes in the data set, from which a user could start an inspection of congeneric series. Inherent experimental error limits the possible correlation between scores and measured affinity; R2 is limited to ∼0.9 when fitting to the data set without over parametrizing. R2 is limited to ∼0.8 when scoring the data set with a method trained on outside data. The details of how the data set was initially selected, and the process by which it matured to better fit the needs of the community are presented. Many groups generously participated in improving the data set, and this underscores the value of a supportive, collaborative effort in moving our field forward.


Genes & Development | 2013

The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response

Mo Li; Lin Yu Lu; Chao Yie Yang; Shaomeng Wang; Xiaochun Yu

Poly-ADP-ribosylation is a unique post-translational modification participating in many biological processes, such as DNA damage response. Here, we demonstrate that a set of Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains recognizes poly(ADP-ribose) (PAR) both in vitro and in vivo. Among these FHA and BRCT domains, the FHA domains of APTX and PNKP interact with iso-ADP-ribose, the linkage of PAR, whereas the BRCT domains of Ligase4, XRCC1, and NBS1 recognize ADP-ribose, the basic unit of PAR. The interactions between PAR and the FHA or BRCT domains mediate the relocation of these domain-containing proteins to DNA damage sites and facilitate the DNA damage response. Moreover, the interaction between PAR and the NBS1 BRCT domain is important for the early activation of ATM during DNA damage response and ATM-dependent cell cycle checkpoint activation. Taken together, our results demonstrate two novel PAR-binding modules that play important roles in DNA damage response.


Journal of Medicinal Chemistry | 2008

Structure-Based Design, Synthesis, Evaluation, and Crystallographic Studies of Conformationally Constrained Smac Mimetics as Inhibitors of the X-linked Inhibitor of Apoptosis Protein (XIAP)

Haiying Sun; Jeanne A. Stuckey; Zaneta Nikolovska-Coleska; Dongguang Qin; Jennifer L. Meagher; Su Qiu; Jianfeng Lu; Chao Yie Yang; Naoyuki G. Saito; Shaomeng Wang

Small molecules designed to mimic the binding of Smac protein to X-linked inhibitor of apoptosis protein (XIAP) are being pursued as a promising new class of anticancer drugs. Herein, we report the design, synthesis, and comprehensive structure-activity relationship studies of a series of conformationally constrained bicyclic Smac mimetics. Our studies led to the discovery of a number of highly potent and cell-permeable Smac mimetics and yielded important new insights into their structure-activity relationship for their binding to XIAP and for their activity in inhibition of cancer cell growth. Determination of the crystal structure of one potent Smac mimetic, compound 21, in complex with XIAP BIR3 provides the structural basis for its high-affinity binding to XIAP and for the design of highly potent Smac mimetics.


Journal of Medicinal Chemistry | 2008

Acylpyrogallols as Inhibitors of Antiapoptotic Bcl-2 Proteins

Guozhi Tang; Zaneta Nikolovska-Coleska; Su Qiu; Chao Yie Yang; Jie Guo; Shaomeng Wang

A series of acylpyrogallols were designed, synthesized, and evaluated as small-molecule inhibitors of antiapoptotic Bcl-2 proteins. The most potent compound 9 (TM-179) binds to Bcl-2 with an IC50 of 170 nM and to Mcl-1 with a Ki of 37 nM. Compound 9 potently inhibits cell growth and induces apoptosis in human breast and prostate cancer cell lines.


Molecular Cell | 2013

RNF111-Dependent Neddylation Activates DNA Damage-Induced Ubiquitination

Teng Ma; Yibin Chen; Feng Zhang; Chao Yie Yang; Shaomeng Wang; Xiaochun Yu

Ubiquitin-like proteins have been shown to be covalently conjugated to targets. However, the functions of these ubiquitin-like proteins are largely unknown. Here, we have screened most known ubiquitin-like proteins after DNA damage and found that NEDD8 is involved in the DNA damage response. Following various DNA damage stimuli, NEDD8 accumulated at DNA damage sites; this accumulation was dependent on an E2 enzyme (UBE2M) and an E3 ubiquitin ligase (RNF111). We further found that histone H4 was polyneddylated in response to DNA damage, and NEDD8 was conjugated to the N-terminal lysine residues of H4. Interestingly, the DNA damage-induced polyneddylation chain could be recognized by the MIU (motif interacting with ubiquitin) domain of RNF168. Loss of DNA damage-induced neddylation negatively regulated DNA damage-induced foci formation of RNF168 and its downstream functional partners, such as 53BP1 and BRCA1, thus affecting the normal DNA damage repair process.


Biochemistry | 2008

Interaction of a Cyclic, Bivalent Smac Mimetic with the X-Linked Inhibitor of Apoptosis Protein.

Zaneta Nikolovska-Coleska; Jennifer L. Meagher; Sheng Jiang; Chao Yie Yang; Su Qiu; Peter P. Roller; Jeanne A. Stuckey; Shaomeng Wang

We have designed and synthesized a cyclic, bivalent Smac mimetic (compound 3) and characterized its interaction with the X-linked inhibitor of apoptosis protein (XIAP). Compound 3 binds to XIAP containing both BIR2 and BIR3 domains with a biphasic dose-response curve representing two binding sites with IC 50 values of 0.5 and 406 nM, respectively. Compound 3 binds to XIAPs containing the BIR3-only and BIR2-only domain with K i values of 4 nM and 4.4 microM, respectively. Gel filtration experiments using wild-type and mutated XIAPs showed that 3 forms a 1:2 stoichiometric complex with XIAP containing the BIR3-only domain. However, it forms a 1:1 stoichiometric complex with XIAP containing both BIR2 and BIR3 domains, and both BIR domains are involved in the binding. Compound 3 efficiently antagonizes inhibition of XIAP in a cell-free functional assay and is >200 times more potent than its corresponding monovalent compound 2. Determination of the crystal structure of 3 in complex with the XIAP BIR3 domain confirms that 3 induces homodimerization of the XIAP BIR3 domain and provides a structural basis for the cooperative binding of one molecule of compound 3 to two XIAP BIR3 molecules. On the basis of this crystal structure, a binding model of XIAP containing both BIR2 and BIR3 domains and 3 was constructed, which sheds light on the ability of 3 to relieve the inhibition of XIAP with not only caspase-9 but also caspase-3/-7. Compound 3 is cell-permeable, effectively activates caspases in whole cells, and potently inhibits cancer cell growth. Compound 3 is a useful biochemical and pharmacological tool for further elucidating the role of XIAP in regulation of apoptosis and represents a promising lead compound for the design of potent, cell-permeable Smac mimetics for cancer treatment.

Collaboration


Dive into the Chao Yie Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liu Liu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Haiying Sun

China Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianfeng Lu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Su Qiu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge