Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaofeng Yang is active.

Publication


Featured researches published by Chaofeng Yang.


Molecular metabolism | 2013

The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue

Andrew C. Adams; Chaofeng Yang; Tamer Coskun; Christine C. Cheng; Ruth E. Gimeno; Yongde Luo; Alexei Kharitonenkov

FGF21 is a multifunctional metabolic regulator. The co-factor βKlotho (KLB) allows FGF21 to signal via FGF receptors. Given the widespread nature of FGFR expression and KLB presence in several organs, it remains unclear which tissue/FGFR isoform determine FGF21 action. Here we show that deletion of FGFR1 in fat (FR1KO) leads to a complete ablation of FGF21 stimulated transcriptional activity in this tissue. Furthermore, FR1KO mice showed no FGF21-mediated lowering of plasma glucose, insulin and triglycerides, altered serum levels of adipokines, no increase in energy expenditure, but preserved reductions in serum/liver FFAs as compared to wild type mice. Of importance, the anti-glycaemic actions of FGF19 were fully evident in FR1KO mice implying that FGF19 functions in a FGFR1/adipose independent manner. Taken together, our findings reveal the existence of an adipose FGFR1 driven axis of cross-tissue communication which defines several aspects of FGF21 biology and delineates mechanistic distinctions between FGF21 and FGF19.


Science Translational Medicine | 2012

Treating Diabetes and Obesity with an FGF21-Mimetic Antibody Activating the βKlotho/FGFR1c Receptor Complex

Ian Foltz; Sylvia Hu; Chadwick Terence King; Xinle Wu; Chaofeng Yang; Wei Wang; Jennifer Weiszmann; Jennitte Stevens; Jiyun Sunny Chen; Noi Nuanmanee; Jamila Gupte; Renee Komorowski; Laura Sekirov; Todd Hager; Taruna Arora; Hongfei Ge; Helene Baribault; Fen Wang; Jackie Zeqi Sheng; Margaret Karow; Minghan Wang; Yongde Luo; Wallace L. McKeehan; Zhulun Wang; Murielle M. Véniant; Yang Li

A monoclonal antibody mimic of FGF21 exerts beneficial metabolic effects in obese monkeys. A Metabolic Mimic Losing weight typically requires exercise and a healthy diet. Managing diabetes similarly relies on diet and exercise but also includes insulin therapy. Now, both diabetes and obesity could be treated together by targeting the fibroblast growth factor 21 (FGF21) pathway. Foltz and colleagues show that an antibody mimic of FGF21 works to regulate glucose and insulin homeostasis, leading to weight loss and glucose tolerance in monkeys. The authors first engineered the FGF21-mimetic monoclonal antibody, which they termed “mimAb1.” This antibody was able to activate human and monkey FGF receptor 1c (FGFR1c)/βKlotho signaling similar to its native counterpart, FGF21. In vivo in obese cynomolgus monkeys, mimAb1 treatment led to a decrease in body weight and body mass index (BMI)—a decrease that was maintained for 9 weeks after the second round of treatment. These beneficial effects on metabolism were seen only initially with FGF21, before animals regained weight. Animals treated with mimAb1 also showed a decrease in fasting and fed plasma insulin levels, suggesting an improvement in insulin sensitivity, as well as a reduction in plasma triglyceride and glucose levels. Native FGF21 is difficult to develop as a therapeutic for diabetes and obesity; efforts to date have fallen short. mimAb1 recreates all of the beneficial metabolic effects of FGF21 as measured but is easier to manufacture, has prolonged pharmacokinetics, and has been engineered with high specificity. This mimAb1 will need additional safety and toxicity testing for translation, but early efficacy data in nonhuman primates suggest that this antibody is on its way to helping treat patients with diet-induced obesity and diabetes. Fibroblast growth factor 21 (FGF21) is a distinctive member of the FGF family with potent beneficial effects on lipid, body weight, and glucose metabolism and has attracted considerable interest as a potential therapeutic for treating diabetes and obesity. As an alternative to native FGF21, we have developed a monoclonal antibody, mimAb1, that binds to βKlotho with high affinity and specifically activates signaling from the βKlotho/FGFR1c (FGF receptor 1c) receptor complex. In obese cynomolgus monkeys, injection of mimAb1 led to FGF21-like metabolic effects, including decreases in body weight, plasma insulin, triglycerides, and glucose during tolerance testing. Mice with adipose-selective FGFR1 knockout were refractory to FGF21-induced improvements in glucose metabolism and body weight. These results in obese monkeys (with mimAb1) and in FGFR1 knockout mice (with FGF21) demonstrated the essential role of FGFR1c in FGF21 function and suggest fat as a critical target tissue for the cytokine and antibody. Because mimAb1 depends on βKlotho to activate FGFR1c, it is not expected to induce side effects caused by activating FGFR1c alone. The unexpected finding of an antibody that can activate FGF21-like signaling through cell surface receptors provided preclinical validation for an innovative therapeutic approach to diabetes and obesity.


Diabetes | 2007

FGFR4 Prevents Hyperlipidemia and Insulin Resistance but Underlies High Fat Diet-Induced Fatty Liver

Xinqiang Huang; Chaofeng Yang; Yongde Luo; Chengliu Jin; Fen Wang; Wallace L. McKeehan

OBJECTIVE—Fibroblast growth factor (FGF) family signaling largely controls cellular homeostasis through short-range intercell paracrine communication. Recently FGF15/19, 21, and 23 have been implicated in endocrine control of metabolic homeostasis. The identity and location of the FGF receptor isotypes that mediate these effects are unclear. The objective was to determine the role of FGFR4, an isotype that has been proposed to mediate an ileal FGF15/19 to hepatocyte FGFR4 axis in cholesterol homeostasis, in metabolic homeostasis in vivo. RESEARCH DESIGN AND METHODS—FGFR4−/− mice—mice overexpressing constitutively active hepatic FGFR4—and FGFR4−/− with constitutively active hepatic FGFR4 restored in the liver were subjected to a normal and a chronic high-fat diet sufficient to result in obesity. Systemic and liver-specific metabolic phenotypes were then characterized. RESULTS—FGFR4-deficient mice on a normal diet exhibited features of metabolic syndrome that include increased mass of white adipose tissue, hyperlipidemia, glucose intolerance, and insulin resistance, in addition to hypercholesterolemia. Surprisingly, the FGFR4 deficiency alleviated high-fat diet–induced fatty liver in obese mice, which is also a correlate of metabolic syndrome. Restoration of FGFR4, specifically in hepatocytes of FGFR4-deficient mice, decreased plasma lipid levels and restored the high-fat diet–induced fatty liver but failed to restore glucose tolerance and sensitivity to insulin. CONCLUSIONS—FGFR4 plays essential roles in systemic lipid and glucose homeostasis. FGFR4 activity in hepatocytes that normally serves to prevent systemic hyperlipidemia paradoxically underlies the fatty liver disease associated with chronic high-fat intake and obesity.


PLOS ONE | 2012

Differential Specificity of Endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in Complex with KLB

Chaofeng Yang; Chengliu Jin; Xiaokun Li; Fen Wang; Wallace L. McKeehan; Yongde Luo

Background Recent studies suggest that betaKlotho (KLB) and endocrine FGF19 and FGF21 redirect FGFR signaling to regulation of metabolic homeostasis and suppression of obesity and diabetes. However, the identity of the predominant metabolic tissue in which a major FGFR-KLB resides that critically mediates the differential actions and metabolism effects of FGF19 and FGF21 remain unclear. Methodology/Principal Findings We determined the receptor and tissue specificity of FGF21 in comparison to FGF19 by using direct, sensitive and quantitative binding kinetics, and downstream signal transduction and expression of early response gene upon administration of FGF19 and FGF21 in mice. We found that FGF21 binds FGFR1 with much higher affinity than FGFR4 in presence of KLB; while FGF19 binds both FGFR1 and FGFR4 in presence of KLB with comparable affinity. The interaction of FGF21 with FGFR4-KLB is very weak even at high concentration and could be negligible at physiological concentration. Both FGF19 and FGF21 but not FGF1 exhibit binding affinity to KLB. The binding of FGF1 is dependent on where FGFRs are present. Both FGF19 and FGF21 are unable to displace the FGF1 binding, and conversely FGF1 cannot displace FGF19 and FGF21 binding. These results indicate that KLB is an indispensable mediator for the binding of FGF19 and FGF21 to FGFRs that is not required for FGF1. Although FGF19 can predominantly activate the responses of the liver and to a less extent the adipose tissue, FGF21 can do so significantly only in the adipose tissue and adipocytes. Among several metabolic and endocrine tissues, the response of adipose tissue to FGF21 is predominant, and can be blunted by the ablation of KLB or FGFR1. Conclusions Our results indicate that unlike FGF19, FGF21 is unable to bind FGFR4-KLB complex with affinity comparable to FGFR1-KLB, and therefore, at physiological concentration less likely to directly and significantly target the liver where FGFR4-KLB predominantly resides. However, both FGF21 and FGF19 have the potential to activate responses of primarily the adipose tissue where FGFR1-KLB resides.


BMC Gastroenterology | 2013

Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress

Chaofeng Yang; Weiqin Lu; Tao Lin; Pan You; Min Ye; Yanqing Huang; Xianhan Jiang; Cong Wang; Fen Wang; Mong Hong Lee; Sai-Ching Jim Yeung; Randy L. Johnson; Chongjuan Wei; Robert Y. L. Tsai; Marsha L. Frazier; Wallace L. McKeehan; Yongde Luo

BackgroundFGF21 is a promising intervention therapy for metabolic diseases as fatty liver, obesity and diabetes. Recent results suggest that FGF21 is highly expressed in hepatocytes under metabolic stress caused by starvation, hepatosteatosis, obesity and diabetes. Hepatic FGF21 elicits metabolic benefits by targeting adipocytes of the peripheral adipose tissue through the transmembrane FGFR1-KLB complex. Ablation of adipose FGFR1 resulted in increased hepatosteatosis under starvation conditions and abrogation of the anti-obesogenic action of FGF21. These results indicate that FGF21 may be a stress responsive hepatokine that targets adipocytes and adipose tissue for alleviating the damaging effects of stress on the liver. However, it is unclear whether hepatic induction of FGF21 is limited to only metabolic stress, or to a more general hepatic stress resulting from liver pathogenesis and injury.MethodsIn this survey-based study, we examine the nature of hepatic FGF21 activation in liver tissues and tissue sections from several mouse liver disease models and human patients, by quantitative PCR, immunohistochemistry, protein chemistry, and reporter and CHIP assays. The liver diseases include genetic and chemical-induced HCC, liver injury and regeneration, cirrhosis, and other types of liver diseases.ResultsWe found that mouse FGF21 is induced in response to chemical (DEN treatment) and genetic-induced hepatocarcinogenesis (disruptions in LKB1, p53, MST1/2, SAV1 and PTEN). It is also induced in response to loss of liver mass due to partial hepatectomy followed by regeneration. The induction of FGF21 expression is potentially under the control of stress responsive transcription factors p53 and STAT3. Serum FGF21 levels correlate with FGF21 expression in hepatocytes. In patients with hepatitis, fatty degeneration, cirrhosis and liver tumors, FGF21 levels in hepatocytes or phenotypically normal hepatocytes are invariably elevated compared to normal health subjects.ConclusionFGF21 is an inducible hepatokine and could be a biomarker for normal hepatocyte function. Activation of its expression is a response of functional hepatocytes to a broad spectrum of pathological changes that impose both cellular and metabolic stress on the liver. Taken together with our recent data, we suggest that hepatic FGF21 is a general stress responsive factor that targets adipose tissue for normalizing local and systemic metabolic parameters while alleviating the overload and damaging effects imposed by the pathogenic stress on the liver. This study therefore provides a rationale for clinical biomarker studies in humans.


Molecular Carcinogenesis | 2009

Resident Hepatocyte Fibroblast Growth Factor Receptor 4 Limits Hepatocarcinogenesis

Xinqiang Huang; Chaofeng Yang; Chengliu Jin; Yongde Luo; Fen Wang; Wallace L. McKeehan

Fibroblast growth factor (FGF) family signaling mediates cell‐to‐cell communication in development and organ homeostasis in adults. Of the FGF receptor (FGFR) isotypes, FGFR4 is the sole resident isotype present in mature parenchymal hepatocytes. FGFR1 that is normally associated with activated nonparenchymal cells appears ectopically in hepatoma cells. Ectopic expression and chronic activity of FGFR1 in hepatocytes accelerates diethylnitrosamine (DEN)‐initiated hepatocarcinogenesis by driving unrestrained cell proliferation and tumor angiogenesis. Hepatocyte FGFR4 mediates livers role in systemic cholesterol/bile acid and lipid metabolism and affects proper hepatolobular restoration after damage without effect on cell proliferation. Here we ask whether FGFR4 plays a role in progression of hepatocellular carcinoma (HCC). We report that although spontaneous HCC was not detected in livers of FGFR4‐deficient mice, the ablation of FGFR4 accelerated DEN‐induced hepatocarcinogenesis. In contrast to FGFR1 that induced a strong mitogenic response and depressed rate of cell death in hepatoma cells, FGFR4 failed to induce a mitogenic response and increased the rate of cell death. FGFR1 but not FGFR4 induced cyclin D1 and repressed p27 expression. Analysis of activation of Erk, JNK, and PI3K‐related AKT signaling pathways indicated that in contrast to FGFR1, FGFR4 failed to sustain Erk activation and did not activate AKT. These differences may underlie the opposing effects of FGFR1 and FGFR4. These results suggest that in contrast to ectopic FGFR1 that is a strong promoter of hepatoma, resident FGFR4 that mediates differentiated hepatocyte metabolic functions also serves to suppress hepatoma progression.


Oncogene | 2013

Distinct roles for fibroblast growth factor signaling in cerebellar development and medulloblastoma.

Brian A. Emmenegger; Eugene I. Hwang; Colin Moore; Shirley L. Markant; Sonja N. Brun; John W. Dutton; Tracy-Ann Read; Marie P. Fogarty; Alok Singh; Donald L. Durden; Chaofeng Yang; Wallace L. McKeehan; Robert J. Wechsler-Reya

Cerebellar granule neurons are the most abundant neurons in the brain, and a critical element of the circuitry that controls motor coordination and learning. In addition, granule neuron precursors (GNPs) are thought to represent cells of origin for medulloblastoma, the most common malignant brain tumor in children. Thus, understanding the signals that control the growth and differentiation of these cells has important implications for neurobiology and neurooncology. Our previous studies have shown that proliferation of GNPs is regulated by Sonic hedgehog (Shh), and that aberrant activation of the Shh pathway can lead to medulloblastoma. Moreover, we have demonstrated that Shh-dependent proliferation of GNPs and medulloblastoma cells can be blocked by basic fibroblast growth factor (bFGF). But while the mitogenic effects of Shh signaling have been confirmed in vivo, the inhibitory effects of bFGF have primarily been studied in culture. Here, we demonstrate that mice lacking FGF signaling in GNPs exhibit no discernable changes in GNP proliferation or differentiation. In contrast, activation of FGF signaling has a potent effect on tumor growth: treatment of medulloblastoma cells with bFGF prevents them from forming tumors following transplantation, and inoculation of tumor-bearing mice with bFGF markedly inhibits tumor growth in vivo. These results suggest that activators of FGF signaling may be useful for targeting medulloblastoma and other Shh-dependent tumors.


Cellular Signalling | 2009

Novel phosphotyrosine targets of FGFR2IIIb signaling.

Yongde Luo; Chaofeng Yang; Chengliu Jin; Rui Xie; Fen Wang; Wallace L. McKeehan

In partnership exclusively with the epithelial FGFR2IIIb isotype and a structurally-specific heparan sulfate motif, stromal-derived FGF7 delivers both growth-promoting and growth-limiting differentiation signals to epithelial cells that promote cellular homeostasis between stromal and epithelial compartments. Intercompartmental homeostasis supported by FGF7/FGFR2IIIb is subverted in many solid epithelial tumors. The normally mesenchymal-derived homologue FGFR1 drives proliferation and a progressive tumor-associated phenotype when it appears ectopically in epithelial cells. In order to understand the mechanism underlying the unique biological effects of FGFR2IIIb, we developed an inducible FGFR2IIIb expression system that is specifically dependent on FGF7 for activation in an initially unresponsive cell line to avoid selection for only the growth-promoting aspects of FGFR2IIIb signaling. We then determined FGF7/FGFR2IIIb signaling-specific tyrosine phosphorylated proteins within 5 min after FGF7 stimulation by phosphopeptide immunoaffinity purification and nano-LC-MS/MS. The FGF7/FGFR2 pair caused tyrosine phosphorylation of multiple proteins that have been implicated in the growth stimulating activities of FGFR1 that included multi-substrate organizers FRS2alpha and IRS4, ERK2 and phosphatases SHP2 and SHIP2. It uniquely phosphorylated CDK2 and phosphatase PTPN18 on sites involved in the attenuation of cell proliferation, and several factors that maintain nuclear-cytosolic relationships (emerin and LAP2), protein structure and other cellular fine structures as well as some proteins of unknown functions. Several of the FGF7/FGFR2IIIb-specific targets have been associated with maintenance of function and tumor suppression and disruption in tumors. In contrast, a number of pTyr substrates associated with FGF2/FGFR1 that are generally associated with intracellular Ca(2+)-phospholipid signaling, membrane and cytoskeletal plasticity, cell adhesion, migration and the tumorigenic phenotype were not observed with FGF7/FGFR2IIIb. Our findings provide specific downstream targets for dissection of causal relationships underlying the distinct role of FGF7/FGFR2IIIb signaling in epithelial cell homeostasis.


Nutrition & Metabolism | 2012

Control of lipid metabolism by adipocyte FGFR1-mediated adipohepatic communication during hepatic stress

Chaofeng Yang; Cong Wang; Min Ye; Chengliu Jin; Weimin He; Fen Wang; Wallace L. McKeehan; Yongde Luo

BackgroundEndocrine FGF19 and FGF21 exert their effects on metabolic homeostasis through fibroblast growth factor receptor (FGFR) and co-factor betaKlotho (KLB). Ileal FGF19 regulates bile acid metabolism through specifically FGFR4-KLB in hepatocytes where FGFR1 is not significant. Both FGF19 and FGF21 activate FGFR1-KLB whose function predominates in adipocytes. Recent studies using administration of FGF19 and FGF21 and genetic ablation of KLB or adipocyte FGFR1 indicate that FGFR1-KLB mediates the response of adipocytes to both FGF21 and FGF19. Here we show that adipose FGFR1 regulates lipid metabolism through direct effect on adipose tissue and indirect effects on liver under starvation conditions that cause hepatic stress.MethodsWe employed adipocyte-specific ablations of FGFR1 and FGFR2 genes in mice, and analyzed metabolic consequences in adipose tissue, liver and systemic parameters under normal, fasting and starvation conditions.ResultsUnder normal conditions, the ablation of adipose FGFR1 had little effect on adipocytes, but caused shifts in expression of hepatic genes involved in lipid metabolism. Starvation conditions precipitated a concurrent elevation of serum triglycerides and non-esterified fatty acids, and increased hepatic steatosis and adipose lipolysis in the FGFR1-deficient mice. Little effect on glucose or ketone bodies due to the FGFR1 deficiency was observed.ConclusionsOur results suggest an adipocyte-hepatocyte communication network mediated by adipocyte FGFR1 that concurrently dampens hepatic lipogenesis and adipocyte lipolysis. We propose that this serves overall to mete out and extend lipid reserves for neural fuels (glucose and ketone bodies), while at the same time governing extent of hepatosteatosis during metabolic extremes and other conditions causing hepatic stress.


Analytical Cellular Pathology | 2009

Dual function microtubule- and mitochondria-associated proteins mediate mitotic cell death

Leyuan Liu; Rui Xie; Chaofeng Yang; Wallace L. McKeehan

Background: Survival and evolution of aneuploid cells after an asymmetric segregation of chromosomes at mitosis may be the common initiating event and underlying cause of the genetic diversity and adaptability of cancers. We hypothesize that mechanisms exist to detect impending aneuploidy and prevent it before completion of an aberrant mitosis. Methods: The distribution of isoforms of C19ORF5, an interactive partner with mitochondria-associated LRPPRC and tumor suppressor RASSF1A, state of spindle microtubules and mitochondrial aggregation was analyzed in synchronized mitotic cells and cells stalled in mitosis after treatment with paclitaxel. Results: C19ORF5 distributed broadly across the mitotic spindle and reversibly accumulated during reversible mitotic arrest. Prolonged stabilization of microtubules caused an accumulation of a C19ORF5 product with dual MAP and MtAP properties that caused irreversible aggregation of mitochondria and death of mitotic cells. Conclusions: Dual function microtubule-associated (MAP) and mitochondria-associated (MtAP) proteins generated by prolonged mitotic arrest trigger mitochondrial-induced mitotic cell death. This is a potential mechanism to prevent minimal survivable aneuploidy resulting from an aberrant cell division and cancers in general at their earliest common origin.

Collaboration


Dive into the Chaofeng Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chengliu Jin

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cong Wang

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge