Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaohua Li is active.

Publication


Featured researches published by Chaohua Li.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders

Cynthia M. Beall; Gianpiero L. Cavalleri; Libin Deng; Robert C. Elston; Yang Gao; Jo Knight; Chaohua Li; Jiang Chuan Li; Yu Liang; Mark McCormack; Hugh Montgomery; Hao Pan; Peter A. Robbins; Siu-Cheung Tam; Ngodrop Tsering; Krishna R. Veeramah; Wei Wang; Puchung Wangdui; Michael E. Weale; Yaomin Xu; Zhe Xu; Ling Yang; M Justin S Zaman; Changqing Zeng; Li Zhang; Xianglong Zhang; Pingcuo Zhaxi; Yong-Tang Zheng

By impairing both function and survival, the severe reduction in oxygen availability associated with high-altitude environments is likely to act as an agent of natural selection. We used genomic and candidate gene approaches to search for evidence of such genetic selection. First, a genome-wide allelic differentiation scan (GWADS) comparing indigenous highlanders of the Tibetan Plateau (3,200–3,500 m) with closely related lowland Han revealed a genome-wide significant divergence across eight SNPs located near EPAS1. This gene encodes the transcription factor HIF2α, which stimulates production of red blood cells and thus increases the concentration of hemoglobin in blood. Second, in a separate cohort of Tibetans residing at 4,200 m, we identified 31 EPAS1 SNPs in high linkage disequilibrium that correlated significantly with hemoglobin concentration. The sex-adjusted hemoglobin concentration was, on average, 0.8 g/dL lower in the major allele homozygotes compared with the heterozygotes. These findings were replicated in a third cohort of Tibetans residing at 4,300 m. The alleles associating with lower hemoglobin concentrations were correlated with the signal from the GWADS study and were observed at greatly elevated frequencies in the Tibetan cohorts compared with the Han. High hemoglobin concentrations are a cardinal feature of chronic mountain sickness offering one plausible mechanism for selection. Alternatively, as EPAS1 is pleiotropic in its effects, selection may have operated on some other aspect of the phenotype. Whichever of these explanations is correct, the evidence for genetic selection at the EPAS1 locus from the GWADS study is supported by the replicated studies associating function with the allelic variants.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data

Yong Tao; Jue Ruan; Shiou-Hwei Yeh; Xuemei Lu; Yu Wang; Weiwei Zhai; Jun Cai; Shaoping Ling; Qiang Gong; Zecheng Chong; Zhengzhong Qu; Qianqian Li; Jiang Liu; Jin Yang; Caihong Zheng; Changqing Zeng; Hurng-Yi Wang; Jing Zhang; Sheng-Han Wang; Lingtong Hao; Lili Dong; Wenjie Li; Min Sun; Wei Zou; Caixia Yu; Chaohua Li; Guojing Liu; Lan Jiang; Jin Xu; Huanwei Huang

We present the analysis of the evolution of tumors in a case of hepatocellular carcinoma. This case is particularly informative about cancer growth dynamics and the underlying driving mutations. We sampled nine different sections from three tumors and seven more sections from the adjacent nontumor tissues. Selected sections were subjected to exon as well as whole-genome sequencing. Putative somatic mutations were then individually validated across all 9 tumor and 7 nontumor sections. Among the mutations validated, 24 were amino acid changes; in addition, 22 large indels/copy number variants (>1 Mb) were detected. These somatic mutations define four evolutionary lineages among tumor cells. Separate evolution and expansion of these lineages were recent and rapid, each apparently having only one lineage-specific protein-coding mutation. Hence, by using a cell-population genetic definition, this approach identified three coding changes (CCNG1, P62, and an indel/fusion gene) as tumor driver mutations. These three mutations, affecting cell cycle control and apoptosis, are functionally distinct from mutations that accumulated earlier, many of which are involved in inflammation/immunity or cell anchoring. These distinct functions of mutations at different stages may reflect the genetic interactions underlying tumor growth.


Human Mutation | 2008

An unusual haplotype structure on human chromosome 8p23 derived from the inversion polymorphism

Libin Deng; Yuezheng Zhang; Jian Kang; Tao Liu; Hongbin Zhao; Yang Gao; Chaohua Li; Hao Pan; Xiaoli Tang; Dunmei Wang; Tianhua Niu; Huanming Yang; Changqing Zeng

Chromosomal inversion is an important type of genomic variations involved in both evolution and disease pathogenesis. Here, we describe the refined genetic structure of a 3.8‐Mb inversion polymorphism at chromosome 8p23. Using HapMap data of 1,073 SNPs generated from 209 unrelated samples from CEPH—Utah residents with ancestry from northern and western Europe (CEU); Yoruba in Ibadan, Nigeria (YRI); and Asian (ASN) samples, which were comprised of Han Chinese from Beijing, China (CHB) and Japanese from Tokyo, Japan (JPT)—we successfully deduced the inversion orientations of all their 418 haplotypes. In particular, distinct haplotype subgroups were identified based on principal component analysis (PCA). Such genetic substructures were consistent with clustering patterns based on neighbor‐joining tree reconstruction, which revealed a total of four haplotype clades across all samples. Metaphase fluorescence in situ hybridization (FISH) in a subset of 10 HapMap samples verified their inversion orientations predicted by PCA or phylogenetic tree reconstruction. Positioning of the outgroup haplotype within one of YRI clades suggested that Human NCBI Build 36‐inverted order is most likely the ancestral orientation. Furthermore, the population differentiation test and the relative extended haplotype homozygosity (REHH) analysis in this region discovered multiple selection signals, also in a population‐specific manner. A positive selection signal was detected at XKR6 in the ASN population. These results revealed the correlation of inversion polymorphisms to population‐specific genetic structures, and various selection patterns as possible mechanisms for the maintenance of a large chromosomal rearrangement at 8p23 region during evolution. In addition, our study also showed that haplotype‐based clustering methods, such as PCA, can be applied in scanning for cryptic inversion polymorphisms at a genome‐wide scale. Hum Mutat 0, 1–8, 2008.


World Journal of Gastroenterology | 2011

Discovery and validation of prognostic markers in gastric cancer by genome-wide expression profiling

Yue-Zheng Zhang; Lianhai Zhang; Yang Gao; Chaohua Li; Shuqin Jia; Ni Liu; Feng Cheng; De-Yun Niu; William Cs Cho; Jiafu Ji; Changqing Zeng

AIM To develop a prognostic gene set that can predict patient overall survival status based on the whole genome expression analysis. METHODS Using Illumina HumanWG-6 BeadChip followed by semi-supervised analysis, we analyzed the expression of 47,296 transcripts in two batches of gastric cancer patients who underwent surgical resection. Thirty-nine samples in the first batch were used as the training set to discover candidate markers correlated to overall survival, and thirty-three samples in the second batch were used for validation. RESULTS A panel of ten genes were identified as prognostic marker in the first batch samples and classified patients into a low- and a high-risk group with significantly different survival times (P = 0.000047). This prognostic marker was then verified in an independent validation sample batch (P = 0.0009). By comparing with the traditional Tumor-node-metastasis (TNM) staging system, this ten-gene prognostic marker showed consistent prognosis results. It was the only independent prognostic value by multivariate Cox regression analysis (P = 0.007). Interestingly, six of these ten genes are ribosomal proteins, suggesting a possible association between the deregulation of ribosome related gene expression and the poor prognosis. CONCLUSION A ten-gene marker correlated with overall prognosis, including 6 ribosomal proteins, was identified and verified, which may complement the predictive value of TNM staging system.


Clinica Chimica Acta | 2011

A novel frame-shift mutation of GLI3 causes non-syndromic and complex digital anomalies in a Chinese family

Feng Cheng; Xin Ke; Ming Lv; Fan Zhang; Chaohua Li; Xianglong Zhang; Yinan Zhang; Xiangjun Zhao; Xingwu Wang; Bo Liu; Jinxiang Han; Yan Li; Changqing Zeng; Sheng Li

A three-generation Han Chinese family was found with complex digital anomalies including various types of polydactyly and syndactyly of fingers and toes. Some extra digits are composed only of soft tissues while others are complete fingers or toes, making this complex case different from previously reported pedigrees. The digital disease shows an autosomal dominant inheritance model. To locate the causative gene, whole-genome SNP analysis was performed using Illumina 370 K CNV-Quad chips followed by linkage analysis with a self-developed algorithm Haplo2Ped (http://bighapmap.big.ac.cn/software.html). Three candidate regions with the highest signals (LOD scores 2.1070) were identified. In one region from 33,904,914 bp to 45,529,271 bp in chromosome 7, GLI3 was selected for further analysis. PCR sequencing and subsequent clone sequencing revealed a single nucleotide deletion (c.2884delG) in exon 14. This frame shift mutation generated a truncated protein with 40 non-endogenous amino acids in its C-terminal (p.Asp962MetfsX41). GLI3 was previously reported to associate with Greig Cephalopolysyndactyly Syndrome, Pallister-Hall Syndrome, and a few cases of preaxial and postaxial polydactylies. We report for the first time a novel mutation of GLI3 causing various digital abnormalities, including multi symptoms as both polydactyly and syndactyly among affected members but no other body maldevelopments (non-syndromic).


Clinica Chimica Acta | 2012

Detection of pathogenic mutations and the mechanism of a rare chromosomal rearrangement in a Chinese family with Becker muscular dystrophy

Feifei Li; Yan Li; Kai Cui; Chaohua Li; Wei Chen; Jie Gao; Yufang Zhu; Changqing Zeng; Sheng Li

OBJECTIVE The objectives of this research are to genetically diagnose a family with Becker muscular dystrophy (BMD), to explore the molecular mechanism of the disease, and to predict the possibility of BMD development in two individuals who have not yet reached the age of onset (young individuals). METHODS The multiplex polymerase chain reaction was first employed to screen dystrophin (DMD) gene deletions, and the locations of deletion breakpoints were identified using the Sequenom platform and long-range PCR. Sanger sequencing was then performed for the undeleted exons. RESULTS All BMD patients and a young individual carry a deletion spanning exons 45 to 53 and an unreported missense mutation on exon 11 of the DMD gene. This point mutation was screened in 412 healthy individuals and heterozygous genotype was found in two females. Determination of deletion breakpoints demonstrated a 330-kb deletion and there was a 9-bp insertion between the breakpoints. This 9-bp could match a reference sequence located within the deleted region. CONCLUSIONS Two mutations of the DMD gene coexist in this family. One young child has a high disease risk. Pathogenic potential of the point mutation requires further investigation. The rare chromosomal rearrangement may be caused by short-nucleotide sequence capture or other unknown mechanisms.


BMC Bioinformatics | 2011

Haplo2Ped: a tool using haplotypes as markers for linkage analysis

Feng Cheng; Xianglong Zhang; Yinan Zhang; Chaohua Li; Changqing Zeng

BackgroundGenerally, SNPs are abundant in the genome; however, they display low power in linkage analysis because of their limited heterozygosity. Haplotype markers, on the other hand, which are composed of many SNPs, greatly increase heterozygosity and have superiority in linkage statistics.ResultsHere we developed Haplo2Ped to automatically transform SNP data into haplotype markers and then to compute the logarithm (base 10) of odds (LOD) scores of regional haplotypes that are homozygous within the disease co-segregation haploid group. The results are reported as a hypertext file and a 3D figure to help users to obtain the candidate linkage regions. The hypertext file contains parameters of the disease linked regions, candidate genes, and their links to public databases. The 3D figure clearly displays the linkage signals in each chromosome. We tested Haplo2Ped in a simulated SNP dataset and also applied it to data from a real study. It successfully and accurately located the causative genomic regions. Comparison of Haplo2Ped with other existing software for linkage analysis further indicated the high effectiveness of this software.ConclusionsHaplo2Ped uses haplotype fragments as mapping markers in whole genome linkage analysis. The advantages of Haplo2Ped over other existing software include straightforward output files, increased accuracy and superior ability to deal with pedigrees showing incomplete penetrance. Haplo2Ped is freely available at: http://bighapmap.big.ac.cn/software.html.


Gene | 2018

Genetic variants of TREML2 are associated with HLA-B27-positive ankylosing spondylitis

Yuan Feng; Yaqiang Hong; Xin Zhang; Chunwei Cao; Xichao Yang; Shujuan Lai; Chunmei Fan; Feng Cheng; Mei Yan; Chaohua Li; Wan Huang; Wei Chen; Ping Zhu; Changqing Zeng

Although ankylosing spondylitis (AS) is a common, highly heritable arthropathy, the precise genetic mechanism underlying the disease remains elusive. Here, we investigate the disease-causing mutations in a large AS family with distinguished complexity, consisting of 23 patients covering four generations and exhibiting a mixed HLA-B27 (+) and (-) status. Linkage analysis with 32 members using three methods and whole-exome sequencing analysis with three HLA-B27 (+) patients, one HLA-B27 (-) patient, and one healthy individual did not identify a mutation common to all of the patients, strongly suggesting the existence of genetic heterogeneity in this large pedigree. However, if only B27-positive patients were analyzed, the linkage analysis located a 22-Mb region harboring the HLA gene cluster in chromosome 6 (LOD = 4.2), and the subsequent exome analysis identified two non-synonymous mutations in the TREML2 and IP6K3 genes. These genes were resequenced among 370 sporadic AS patients and 487 healthy individuals. A significantly higher mutation frequency of TREML2 was observed in AS patients (1.51% versus 0.21%). The results obtained for the AS pedigree and sporadic patients suggest that mutation of TREML2 is a major factor leading to AS for HLA-B27 (+) members in this large family and that TREML2 is also a susceptibility gene promoting the development of ankylosing spondylitis in HLA-B27 (+) individuals.


Journal of Luminescence | 2006

VUV–UV excited luminescent properties of LnCa4O(BO3)3:RE3+ (Ln=Y, La, Gd; Re=Eu, Tb, Dy, Ce)

Hucheng Yang; Chaohua Li; Hong He; Yeliao Tao; Jiayue Xu; Q. Su


Molecular Vision | 2010

Evaluation of BLID and LOC399959 as candidate genes for high myopia in the Chinese Han population.

Fuxin Zhao; Jian Bai; Wei Chen; Anquan Xue; Chaohua Li; Zhonghui Yan; Hui Chen; Fan Lu; Yongwu Hu; Jia Qu; Changqing Zeng; Xiangtian Zhou

Collaboration


Dive into the Chaohua Li's collaboration.

Top Co-Authors

Avatar

Changqing Zeng

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Feng Cheng

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Xianglong Zhang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Wei Chen

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Gao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yinan Zhang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Bo Liu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Hao Pan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge