Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaoming Wang is active.

Publication


Featured researches published by Chaoming Wang.


Analytical Chemistry | 2012

Three-Dimensional Microtissue Assay for High-Throughput Cytotoxicity of Nanoparticles

Yang Luo; Chaoming Wang; Mainul Hossain; Yong Qiao; Liyuan Ma; Jincui An; Ming Su

Traditional in vitro nanotoxicity researches are conducted on cultured two-dimensional (2D) monolayer cells and thereby cannot reflect organism response to nanoparticle toxicities at tissue levels. This paper describes a new, high-throughput approach to test in vitro nanotoxicity in three-dimensional (3D) microtissue array, where microtissues are formed by seeding cells in nonsticky microwells, and cells are allowed to aggregate and grow into microtissues with defined size and shape. Nanoparticles attach and diffuse into microtissues gradually, causing radial cytotoxicity among cells, with more cells being killed on the outer layers of the microtissue than inside. Three classical toxicity assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT), glucose-6-phosphate dehydrogenase (G6DP), and calcein AM and ethidium homodimer (calcein AM/EthD-1)] have been adopted to verify the feasibility of the proposed approach. Results show that the nanotoxicities derived from this method are significantly lower than that from traditional 2D cultured monolayer cells (p < 0.05). Equipped with a microplate reader or a microscope, the nanotoxicity assay could be completed automatically without transferring the microtissue, ensuring the reliability of toxicity assay. The proposed approach provides a new strategy for high-throughput, simple, and accurate evaluation of nanoparticle toxicities by combining 3D microtissue array with a panel of classical toxicity assays.


Biosensors and Bioelectronics | 2012

X-ray enabled detection and eradication of circulating tumor cells with nanoparticles

Mainul Hossain; Yang Luo; Zhaoyong Sun; Chaoming Wang; Minghui Zhang; Hanyu Fu; Yong Qiao; Ming Su

The early detection and eradication of circulating tumor cells (CTCs) play an important role in cancer metastasis management. This paper describes a new nanoparticle-enabled technique for integrated enrichment, detection and killing of CTCs by using magnetic nanoparticles and bismuth nanoparticles, X-ray fluorescence spectrometry, and X-ray radiation. The nanoparticles are modified with tumor targeting agents and conjugated with tumor cells through folate receptors over-expressed on cancer cells. A permanent micro-magnet is used to collect CTCs suspended inside a flowing medium that contains phosphate buffered saline (PBS) or whole blood. The characteristic X-ray emissions from collected bismuth nanoparticles, upon excitation with collimated X-rays, are used to detect CTCs. Results show that the method is capable of selectively detecting CTCs at concentrations ranging from 100-100,000 cells/mL in the buffer solution, with a detection limit of ≈ 100 CTCs/mL. Moreover, the dose of primary X-rays can be enhanced to kill the localized CTCs by radiation induced DNA damage, with minimal invasiveness, thus making in vivo personalized CTC management possible.


Journal of Materials Chemistry B | 2013

Visible light mediated killing of multidrug-resistant bacteria using photoacids

Yang Luo; Chaoming Wang; Ping Peng; Mainul Hossain; Tianlun Jiang; Weiling Fu; Yi Liao; Ming Su

Increasing acidity is a promising method for bacterial inactivation by inhibiting the synthesis of intracellular proteins at low pH. However, conventional ways of pH control are not reversible, which can cause continuous changes in cellular and biological behaviours and are harmful to the host. Utilizing a photoacid that can reversibly alter pH over two units, we demonstrated a strong bacterial inhibition assisted by visible light. The pH value of the solution reverts back to the original level immediately after the irradiation is stopped. If a photoacid is combined with colistin, the minimum inhibitory concentration (MIC) of colistin on multidrug-resistant (MDR) Pseudomonas aeruginosa can be improved ∼32 times (from 8 to 0.25 μg mL-1), which significantly decreases the toxicity of colistin in clinics. Evidenced by the extremely low toxicity of the photoacid, this strategy is promising in MDR bacteria killing.


Analytical Chemistry | 2010

Thermally Addressed Immunosorbent Assay for Multiplexed Protein Detections Using Phase Change Nanoparticles

Liyuan Ma; Chaoming Wang; Yan Hong; Minghui Zhang; Ming Su

Thermally addressed immunoassay is developed to detect multiple proteins using phase change nanoparticles as thermal barcodes. The solid to liquid phase changes of nanoparticles absorb heat energy and generate sharp melting peaks, which are used as thermal signatures to determine the existence and concentration of proteins. Multiple proteins can be detected by using different types of nanoparticles in order to create a one-to-one correspondence between one type of nanoparticle and one type of protein. The fusion enthalpy that is proportional to the amount of phase change materials has been used to derive the amount of protein. The melting temperatures of nanoparticles are designed to be higher than 100 degrees C to avoid interference from species contained in the fluid. Thus, the use of thermal nanoparticles allows the detection of multiple low concentration proteins in a complex fluid such as cell lysate regardless of the color, salt concentration, and conductivity of the sample.


Analytical Chemistry | 2012

Single cell DNA damage/repair assay using HaloChip.

Yong Qiao; Chaoming Wang; Ming Su; Liyuan Ma

The molecular level damage to DNA is important due to DNAs susceptibility to free radical attacks and crucial roles in maintaining cell functions. Although a panel of techniques can be used to detect DNA damages, most of them are limited due to low sensitivity, low throughput, incompatibility for automated data analysis, and labor-intensive operations. We have developed a cell array based DNA damage assay in which mammalian cells are attached on an array of microfabricated patterns through electrostatic interactions. After trapping patterned cells inside gels, damaged DNA fragment can diffuse out of the nucleus and form a halo around each cell inside gels. The halo array can be observed fluorescently after labeling DNA with ethidium bromide. DNA damages can be determined sensitively at the single cell level, accurately due to the symmetric shape of the halo, and automatically due to the spatial registry of each cell and the nonoverlapping halos surrounding cells. The HaloChip can be used to detect DNA damages caused by chemicals and ultraviolet and X-ray irradiations with high efficiency. A major advantage of HaloChip is the ability to increase throughout by spatially encoding multiple dosing conditions on the same chip. Most importantly, the method can be used to measure variations in response to DNA damaging agents within the same cell population. Compared with halo assay or comet assay alone, this method allows automated analysis of a million cells without an overlapping issue. Compared with the microwell array based comet assay, this method can selectively capture and analyze cells, and the results can be easily analyzed to provide precise information on DNA damage. This method can be used in a broad range of clinical, epidemiological, and experimental settings.


Analytical Chemistry | 2011

Simultaneous Detection of Multiple Biomarkers with over Three Orders of Concentration Difference Using Phase Change Nanoparticles

Chaoming Wang; Zhaoyong Sun; Liyuan Ma; Ming Su

A big challenge for multiplexed detection of cancer biomarkers is that biomarker concentrations in body fluid differs several orders of magnitude. Existing techniques are not suitable to detect low- and high-concentration biomarkers (protein and DNA) at the same time, and liquid chromatography or electrophoresis is used to separate or purify target biomarkers before analysis. This paper describes a new broad-range biomarker assay using solid to liquid phase change nanoparticles, where a panel of metallic nanoparticles (i.e., metals and eutectic alloys) are modified with a panel of ligands to establish a one-to-one correspondence and attached onto ligand-modified substrates by forming sandwiched complexes. The melting peak and fusion enthalpy of phase change nanoparticles during thermal analysis reflect the type and concentration of biomarkers, respectively. The thermal readout condition can be adjusted in such a way that multiple biomarkers with concentration difference over 3 orders of magnitude have been simultaneously detected under the same condition.


Biosensors and Bioelectronics | 2010

Highly sensitive thermal detection of thrombin using aptamer-functionalized phase change nanoparticles

Chaoming Wang; Mainul Hossain; Liyuan Ma; Zeyu Ma; James J. Hickman; Ming Su

This paper describes a novel thermal biosensing technique for the highly sensitive and selective detection of thrombin using RNA aptamer-functionalized phase change nanoparticles as thermal probes. The presence of thrombin in solution leads to attachment of nanoparticles onto a substrate modified with the same aptamer by forming sandwiched complexes. The phase changes of nanoparticles from solid to liquid adsorb heat energy and generate sharp melting peaks during linear temperature scans, where the positions and areas of the melting peaks reflect the presence and the amount of thrombin, respectively. A detection sensitivity of 22 nM is achieved on flat aluminum surfaces, and the sensitivity can be enhanced by four times using silicon nanopillar substrates that have higher surface area. The thermal detection is immune to colored species in solution and has been used directly to detect thrombin in serum samples. By combining the high specificity of aptamers and the large surface area of silicon nanostructures, the thermal signals obtained during phase change of nanoparticles provide a highly sensitive, selective and low-cost method for thrombin detection.


Analytical Chemistry | 2010

Scanning calorimetric detections of multiple DNA biomarkers contained in complex fluids.

Chaoming Wang; Liyuan Ma; Li-Mei Chen; Karl X. Chai; Ming Su

Most of the existing techniques cannot be used to detect molecular biomarkers contained in complex fluids due to issues such as enzyme inhibition or signal interference. We have developed a nanoparticle-based scanning calorimetric method for the highly sensitive detections of multiple DNA biomarkers contained in cell lysate and milk by using solid-liquid phase change nanoparticles as thermal barcodes. The detection is based on the principle that the temperature of solid will not rise above the melting temperature unless all solid is molten, thus nanoparticles have sharp melting peaks during the thermal scan process. A one-to-one correspondence can thus be created between one type of nanoparticles and one type of biomarker, i.e., multiple biomarkers can be detected at the same time using a combination of nanoparticles. The melting temperature and the heat flow reflect the type and the concentration of the biomarker, respectively. The target oligonucleotides at low concentration in cell lysate (80 pM) have been detected through thermal signal transduction. The melting temperature of nanoparticles can be designed to avoid interference from coexisting species contained in the fluids, bringing simultaneously high sensitivity and multiplicity, as well as sample preparation benefits to biomarker detections.


Journal of Materials Chemistry B | 2015

Cationic surface modification of gold nanoparticles for enhanced cellular uptake and X-ray radiation therapy.

Chaoming Wang; An Sun; Yong Qiao; Peipei Zhang; Liyuan Ma; Ming Su

A challenge of X-ray radiation therapy is that high dose X-ray can damage normal cells and cause side effects. This paper describes a new nanoparticle-based method to reduce X-ray dose in radiation therapy by internalization of gold nanoparticles that are modified with cationic molecules into cancer cells. A cationic thiol molecule is synthesized and used to modify gold nanoparticles in a one-step reaction. The modified nanoparticles can penetrate cell membranes at high yield. By bring radio-sensitizing gold nanoparticles closer to nuclei where DNA is stored, the total X-ray dose needed to kill cancer cells has been reduced. The simulation of X-ray-gold nanoparticle interaction also indicates that Auger electrons contribute more than photoelectrons.


Applied Physics Letters | 2010

Multiplexed biomarker detection using x-ray fluorescence of composition-encoded nanoparticles

Mainul Hossain; Chaoming Wang; Ming Su

Multiple DNA and protein biomarkers have been detected based on characteristic x-ray fluorescence of a panel of metal and alloy nanoparticles, which are modified with ligands of biomarkers to create a one-to-one correspondence and immobilized on ligand-modified substrates after forming complexes with target biomarkers in three-strand or sandwich configuration. By determining the presence and concentration of nanoparticles using x-ray fluorescence, the nature and amount of biomarkers can be detected with limits of 1 nM for DNA and 1 ng/ml for protein. By combining high penetrating ability of x-rays, this method allows quantitative imaging of multiple biomarkers.

Collaboration


Dive into the Chaoming Wang's collaboration.

Top Co-Authors

Avatar

Ming Su

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Liyuan Ma

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Mainul Hossain

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Yang Luo

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yong Qiao

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Shengli Zou

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haining Wang

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

James J. Hickman

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Yan Hong

University of Central Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge