Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaoqi Zhang is active.

Publication


Featured researches published by Chaoqi Zhang.


Journal of Experimental & Clinical Cancer Research | 2016

Inhibition of SALL4 reduces tumorigenicity involving epithelial-mesenchymal transition via Wnt/β-catenin pathway in esophageal squamous cell carcinoma

Jing He; Mingxia Zhou; Xinfeng Chen; Dongli Yue; Li Yang; Guohui Qin; Zhen Zhang; Qun Gao; Dan Wang; Chaoqi Zhang; Lan Huang; Liping Wang; Bin Zhang; Jane Yu; Yi Zhang

BackgroundGrowing evidence suggests that SALL4 plays a vital role in tumor progression and metastasis. However, the molecular mechanism of SALL4 promoting esophageal squamous cell carcinoma (ESCC) remains to be elucidated.MethodsThe gene and protein expression profiles- were examined by using quantitative real-time PCR, immunohistochemistry and western blotting. Small hairpin RNA was used to evaluate the role of SALL4 both in cell lines and in animal models. Cell proliferation, apoptosis and invasion were assessed by CCK8, flow cytometry and transwell-matrigel assays. Sphere formation assay was used for cancer stem cell derivation and characterization.ResultsOur study showed that the transcription factor SALL4 was overexpressed in a majority of human ESCC tissues and closely correlated with a poor outcome. We established the lentiviral system using short hairpin RNA to knockdown SALL4 in TE7 and EC109 cells. Silencing of SALL4 inhibited the cell proliferation, induced apoptosis and the G1 phase arrest in cell cycle, decreased the ability of migration/invasion, clonogenicity and stemness in vitro. Besides, down-regulation of SALL4 enhanced the ESCC cells’ sensitivity to cisplatin. Xenograft tumor models showed that silencing of SALL4 decreased the ability to form tumors in vivo. Furthermore, our study demonstrated that SALL4 played a vital role in modulating the stemness of ESCC cells via Wnt/β-catenin signaling pathway and in epithelial-mesenchymal transition.ConclusionsOur results revealed that SALL4 might serve as a functional marker for ESCC cancer stem cell, a crucial marker for prognosis and an attractive candidate for target therapy of ESCC.


Oncogene | 2018

IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma

Yamin Qiao; Chaoqi Zhang; A Li; Dan Wang; Z Luo; Yu Ping; B Zhou; Shasha Liu; Hong Li; Dongli Yue; Zhen Zhang; Xinfeng Chen; Zhibo Shen; Jingyao Lian; Y Li; S Wang; Feng Li; Lan Huang; Li Dong Wang; Bin Zhang; J Yu; Z Qin; Yi Zhang

Various factors and cellular components in the tumor microenvironment are key drivers associated with drug resistance in many cancers. Here, we analyzed the factors and molecular mechanisms involved in chemoresistance in patients with esophageal squamous cell carcinoma (ESCC). We found that interleukin 6 (IL6) derived mainly from cancer-associated fibroblasts played the most important role in chemoresistance by upregulating C-X-C motif chemokine receptor 7 (CXCR7) expression through signal transducer and activator of transcription 3/nuclear factor-κB pathway. CXCR7 knockdown resulted in the inhibition of IL6-induced proliferation and chemoresistance. In addition, CXCR7 silencing significantly decreased gene expression associated with stemness, chemoresistance and epithelial–mesenchymal transition and suppressed the proliferation ability of ESCC cells in three-dimensional culture systems and angiogenesis assay. In clinical samples, ESCC patients with high expression of CXCR7 and IL6 presented a significantly worse overall survival and progression-free survival upon receiving cisplatin after operation. These results suggest that the IL6–CXCR7 axis may provide a promising target for the treatment of ESCC.


Oncotarget | 2017

Target of obstructive sleep apnea syndrome merge lung cancer: based on big data platform

Lifeng Li; Jingli Lu; Wenhua Xue; Liping Wang; Yunkai Zhai; Zhirui Fan; Ge Wu; Feifei Fan; Jieyao Li; Chaoqi Zhang; Yi Zhang; Jie Zhao

Based on our hospital database, the incidence of lung cancer diagnoses was similar in obstructive sleep apnea Syndrome (OSAS) and hospital general population; among individual with a diagnosis of lung cancer, the presence of OSAS was associated with an increased risk for mortality. In the gene expression and network-level information, we revealed significant alterations of molecules related to HIF1 and metabolic pathways in the hypoxic-conditioned lung cancer cells. We also observed that GBE1 and HK2 are downstream of HIF1 pathway important in hypoxia-conditioned lung cancer cell. Furthermore, we used publicly available datasets to validate that the late-stage lung adenocarcinoma patients showed higher expression HK2 and GBE1 than early-stage ones. In terms of prognostic features, a survival analysis revealed that the high GBE1 and HK2 expression group exhibited poorer survival in lung adenocarcinoma patients. By analyzing and integrating multiple datasets, we identify molecular convergence between hypoxia and lung cancer that reflects their clinical profiles and reveals molecular pathways involved in hypoxic-induced lung cancer progression. In conclusion, we show that OSAS severity appears to increase the risk of lung cancer mortality.


Cellular Physiology and Biochemistry | 2017

‘Repair’ Treg Cells in Tissue Injury

Chaoqi Zhang; Lifeng Li; Kexin Feng; Daoyang Fan; Wenhua Xue; Jingli Lu

Studies in mice and humans have elucidated an important role for Tregs in promoting tissue repair and restoring tissue integrity. Emerging evidence has revealed that Tregs promoted wound healing and repair processes at multiple tissue sites, such as the heart, liver, kidney, muscle, lung, bone and central nervous system. The localization of repair Tregs in the lung, muscle and liver exhibited unique phenotypes and functions. Epidermal growth factor receptor, amphiregulin, CD73/CD39 and keratinocyte growth factor are important repair factors that are produced or expressed by repair Tregs; these factors coordinate with parenchymal cells to limit injury and promote repair. In addition, repair Tregs can be modulated by IL-33/ST2, TCR signals and other cytokines in the context of injured microenvironment cues. In this review, we provide an overview of the emerging knowledge about Treg-mediated repair in damaged tissues and organs.


Cancer Research | 2018

Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer

Lifeng Li; Liping Wang; Jieyao Li; Zhirui Fan; Li Yang; Zhen Zhang; Chaoqi Zhang; Dongli Yue; Guohui Qin; Tengfei Zhang; Feng Li; Xinfeng Chen; Yu Ping; Dan Wang; Qun Gao; Qianyi He; Lan Huang; Hong Li; Jianmin Huang; Xuan Zhao; Wenhua Xue; Zhi Sun; Jingli Lu; Jane Yu; Jie Zhao; Bin Zhang; Yi Zhang

Metformin is a broadly prescribed drug for type 2 diabetes that exerts antitumor activity, yet the mechanisms underlying this activity remain unclear. We show here that metformin treatment blocks the suppressive function of myeloid-derived suppressor cells (MDSC) in patients with ovarian cancer by downregulating the expression and ectoenzymatic activity of CD39 and CD73 on monocytic and polymononuclear MDSC subsets. Metformin triggered activation of AMP-activated protein kinase α and subsequently suppressed hypoxia-inducible factor α, which was critical for induction of CD39/CD73 expression in MDSC. Furthermore, metformin treatment correlated with longer overall survival in diabetic patients with ovarian cancer, which was accompanied by a metformin-induced reduction in the frequency of circulating CD39+CD73+ MDSC and a concomitant increase in the antitumor activities of circulating CD8+ T cells. Our results highlight a direct effect of metformin on MDSC and suggest that metformin may yield clinical benefit through improvement of antitumor T-cell immunity by dampening CD39/CD73-dependent MDSC immunosuppression in ovarian cancer patients.Significance: The antitumor activity of an antidiabetes drug is attributable to reduced immunosuppressive activity of myeloid-derived tumor suppressor cells. Cancer Res; 78(7); 1779-91. ©2018 AACR.


Oncotarget | 2017

Integrated analysis profiles of long non-coding RNAs reveal potential biomarkers of drug resistance in lung cancer

Wenhua Xue; Lifeng Li; Xin Tian; Zhirui Fan; Ying Yue; Chaoqi Zhang; Xian-fei Ding; Xiaoqin Song; Bingjun Ma; Yunkai Zhai; Jingli Lu; Quancheng Kan; Jie Zhao

Lung cancer is one of the leading causes of cancer-related death. Resistance to chemotherapy and molecularly targeted therapies is a major problem that can contribute substantially to high mortality. The roles of long non-coding RNAs (lncRNAs) in drug resistance of lung cancer are insufficiently understood. Here, we identified a distinct drug resistance-related transcriptional signature and constructed a functional lncRNA-mRNA co-expression network. We found that 34 lncRNAs and 103 mRNAs have differential expression in drug resistance of lung cancer, in which 10 lncRNAs were down regulated and 24 up regulated; 49 mRNAs were down regulated and 54 up regulated. LncRNAs-mRNAs expression network analysis revealed a role for lncRNAs in modulating cancer-related pathways. We also found that two pair lncRNAs and their subnetworks were highly related to drug resistance. NR_028502.1/NR_028505.1 were found differentially co-expressed with nine mRNAs, and highly correlated with better clinical outcome. NR_030725.1/NR_030726.1 co-expressed with eleven mRNAs, and were associated with poor survival in patients with lung cancer. Our work comprehensively identified expression signature of resistance-associated lncRNAs and their inter-regulated mRNAs in lung cancer.Lung cancer is one of the leading causes of cancer-related death. Resistance to chemotherapy and molecularly targeted therapies is a major problem that can contribute substantially to high mortality. The roles of long non-coding RNAs (lncRNAs) in drug resistance of lung cancer are insufficiently understood. Here, we identified a distinct drug resistance-related transcriptional signature and constructed a functional lncRNA-mRNA co-expression network. We found that 34 lncRNAs and 103 mRNAs have differential expression in drug resistance of lung cancer, in which 10 lncRNAs were down regulated and 24 up regulated; 49 mRNAs were down regulated and 54 up regulated. LncRNAs-mRNAs expression network analysis revealed a role for lncRNAs in modulating cancer-related pathways. We also found that two pair lncRNAs and their subnetworks were highly related to drug resistance. NR_028502.1/NR_028505.1 were found differentially co-expressed with nine mRNAs, and highly correlated with better clinical outcome. NR_030725.1/NR_030726.1 co-expressed with eleven mRNAs, and were associated with poor survival in patients with lung cancer. Our work comprehensively identified expression signature of resistance-associated lncRNAs and their inter-regulated mRNAs in lung cancer.


Journal of Experimental & Clinical Cancer Research | 2018

MiR-760 suppresses human colorectal cancer growth by targeting BATF3/AP-1/cyclinD1 signaling

Ling Cao; Yulin Liu; Dan Wang; Lan Huang; Feng Li; Jinbo Liu; Chaoqi Zhang; Zhibo Shen; Qun Gao; Weitang Yuan; Yi Zhang

BackgroundRecent studies have reported that microRNAs (miRNAs) often function as negative post-transcriptional regulators with altered expression levels found in colorectal cancer (CRC). There have been few studies on miRNAs that regulate the oncogenic alterations in CRC. Here, we aim to explore the anti-cancer miRNA and the potential mechanisms by which miRNAs modulate CRC progression.MethodsWe performed an integrated analysis of CRC miRNA expression datasets in The Cancer Genome Atlas (TCGA). The miRNA with the lowest expression, miR-760, was validated in an independent validation sample cohort of 76 CRC tissues. Functional assays, such as CCK-8 assay, colony formation assay, and CFSE staining, were used to determine the oncogenic role of miR-760 in human CRC progression. Furthermore, western blotting and dual-luciferase reporter assay were used to determine the mechanism by which miR-760 promotes proliferation of CRC cells. Xenograft nude mouse models were used to determine the role of miR-760 in CRC tumorigenicity in vivo. Immunohistochemical assays were conducted to study the relationship between miR-760 expression and basic leucine zipper transcriptional factor ATF-like 3 (BATF3) expression in human CRC samples.ResultsmiR-760 was markedly downregulated in CRC tissues, and low miR-760 expression was associated with poor prognosis among CRC patients. Upregulation of miR-760 suppressed CRC cell proliferation, whereas downregulation of miR-760 promoted CRC proliferation in vitro. Additionally, we identified BATF3 as a direct target of miR-760, and that the essential biological function of miR-760 during CRC progression both in vitro and in vivo is to suppress the expression of BATF3 and downstream cyclinD1 via AP-1 transcription factor. Finally, we showed a significant correlation between miR-760 and BATF3 expression in CRC tissues.ConclusionsmiR-760 inhibited CRC growth by downregulating BATF3/AP-1/ cyclinD1 signaling.


Cellular Physiology and Biochemistry | 2018

Regulation of Memory CD8+ T Cell Differentiation by MicroRNAs

Zhen Zhang; Chaoqi Zhang; Feng Li; Bin Zhang; Yi Zhang

MicroRNAs (miRNAs) have emerged as crucial regulators of T lymphocyte survival, differentiation and function, all of which are key factors impacting the outcome of adoptive T cell-based immunotherapy. It has become increasingly clear that the adoptive transfer of memory CD8+ T cell subsets is highly correlated with objective clinical responses for patients with advanced cancer. However, it is unclear how to improve the long-term persistence of transferred CD8+ T cells using miRNAs. Here, we highlight the current advances in our understanding of the role of miRNAs in regulating the differentiation of memory CD8+ T cells. We specifically discuss the effect of miRNAs on key transcription factors, immune checkpoints and signal pathways, which contribute to the differentiation of effector and memory T cell subsets. Ultimately, miRNAs may be easily integrated into existing T cell receptor (TCR) and chimeric antigen receptor (CAR) platforms to promote adoptive T cell therapy with multiple advantages. Thus, combining T cell-based therapy with miRNAs could be considered a promising and robust strategy for cancer treatment.


Oncotarget | 2017

miR-29a-3p suppresses cell proliferation and migration by downregulating IGF1R in hepatocellular carcinoma

Xiao Wang; Shasha Liu; Ling Cao; Tengfei Zhang; Dongli Yue; Liping Wang; Yu Ping; Qianyi He; Chaoqi Zhang; Meng Wang; Xinfeng Chen; Qun Gao; Dan Wang; Zhen Zhang; Fei Wang; Li Yang; Jieyao Li; Lan Huang; Bin Zhang; Yi Zhang

Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Insulin-like growth factor 1 receptor (IGF1R) is a transmembrane heterotetrameric protein that has been reported to promote transformation to malignancy and cancer cell proliferation and survival. In this study, we found that the expression of miR-29a-3p was downregulated in HCC patients, resulting in poor survival rates. Contrastingly, the overexpression of miR-29a-3p significantly inhibited proliferation and migration in HepG2 cells. miR-29a-3p directly targeted IGF1R and down-regulated its expression. Moreover, knockdown of IGF1R led to the increased production of chemokine ligand 5 (CCL5). In tumor lesions, the local expression of CCL5 negatively affected the expression of IGF1R. Transwell analysis showed that CCL5 was important for the chemotactic movement of CD8+ T lymphocytes. The expression of CCL5 in HCC tissues positively correlated with the expression of CD8+ T lymphocyte surface marker, CD8. Patients with high CCL5 expression exhibited better survival. Our results revealed that miR-29a-3p is a tumor suppressor gene that acts by directly repressing the oncogene IGF1R, which takes part in immunoregulation in tumor microenvironments in HCC, implying that miR-29a-3p could be a potential target for HCC treatment.


Frontiers in Immunology | 2017

Unique Features of Pancreatic-Resident Regulatory T Cells in Autoimmune Type 1 Diabetes

Jingli Lu; Chaoqi Zhang; Lifeng Li; Wenhua Xue; Chengliang Zhang; Xiaojian Zhang

Recent progress in regulatory T cells (Tregs) biology emphasizes the importance of understanding tissue-resident Tregs in response to tissue-specific environment. Now, emerging evidence suggests that pancreatic-resident forkhead box P3+ Tregs have distinguishable effects on the suppression of over-exuberant immune responses in autoimmune type 1 diabetes (T1D). Thus, there is growing interest in elucidating the role of pancreatic-resident Tregs that function and evolve in the local environment. In this review, we discuss the phenotype and function of Tregs residing in pancreatic tissues and pancreatic lymph nodes, with emphasis on the unique subpopulations of Tregs that control the disease progression in the context of T1D. Specifically, we discuss known and possible modulators that influence the survival, migration, and maintenance of pancreatic Tregs.

Collaboration


Dive into the Chaoqi Zhang's collaboration.

Top Co-Authors

Avatar

Yi Zhang

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Li

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Zhang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Dan Wang

Zhengzhou University

View shared research outputs
Researchain Logo
Decentralizing Knowledge