Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaoqin Xie is active.

Publication


Featured researches published by Chaoqin Xie.


The FASEB Journal | 2014

Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium

Irene C. Turnbull; Ioannis Karakikes; Gregory W. Serrao; Peter Backeris; Jia Jye Lee; Chaoqin Xie; Grant Senyei; Ronald E. Gordon; Ronald A. Li; Fadi G. Akar; Roger J. Hajjar; Jean Sebastien Hulot; Kevin D. Costa

Cardiac experimental biology and translational research would benefit from an in vitro surrogate for human heart muscle. This study investigated structural and functional properties and interventional responses of human engineered cardiac tissues (hECTs) compared to human myocardium. Human embryonic stem cell‐derived cardiomyocytes (hESC‐CMs, >90% troponin‐positive) were mixed with collagen and cultured on force‐sensing elastomer devices. hECTs resembled trabecular muscle and beat spontaneously (1.18±0.48 Hz). Microstructural features and mRNA expression of cardiac‐specific genes (α‐MHC, SERCA2a, and ACTC1) were comparable to human myocardium. Optical mapping revealed cardiac refractoriness with loss of 1:1 capture above 3 Hz, and cycle length dependence of the action potential duration, recapitulating key features of cardiac electrophysiology. hECTs reconstituted the Frank‐Starling mechanism, generating an average maximum twitch stress of 660 μN/mm2 at Lmax, approaching values in newborn human myocardium. Dose‐response curves followed exponential pharmacodynamics models for calcium chloride (EC50 1.8 mM) and verapamil (IC50 0.61 μM); isoproterenol elicited a positive chronotropic but negligible inotropic response, suggesting sarcoplasmic reticulum immaturity. hECTs were amenable to gene transfer, demonstrated by successful transduction with Ad.GFP. Such 3‐D hECTs recapitulate an early developmental stage of human myocardium and promise to offer an alternative preclinical model for cardiology research.—Turnbull, I. C., Karakikes, I., Serrao, G. W., Backeris, P., Lee, J.‐J., Xie, C., Senyei, G., Gordon, R. E., Li, R. A., Akar, F. G., Hajjar, R. J., Hulot, J.‐S., Costa, K. D. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. 28, 644–654 (2014). www.fasebj.org


Circulation Research | 2011

Disruption of Hexokinase II–Mitochondrial Binding Blocks Ischemic Preconditioning and Causes Rapid Cardiac Necrosis

Kirsten M.A. Smeele; Richard Southworth; Rongxue Wu; Chaoqin Xie; Rianne Nederlof; Alice Warley; Jessica K. Nelson; Pepijn van Horssen; Jeroen P. H. M. van den Wijngaard; Sami Heikkinen; Markku Laakso; Anneke Koeman; Maria Siebes; Otto Eerbeek; Fadi G. Akar; Hossein Ardehali; Markus W. Hollmann; Coert J. Zuurbier

Rationale: Isoforms I and II of the glycolytic enzyme hexokinase (HKI and HKII) are known to associate with mitochondria. It is unknown whether mitochondria-bound hexokinase is mandatory for ischemic preconditioning and normal functioning of the intact, beating heart. Objective: We hypothesized that reducing mitochondrial hexokinase would abrogate ischemic preconditioning and disrupt myocardial function. Methods and Results: Ex vivo perfused HKII+/− hearts exhibited increased cell death after ischemia and reperfusion injury compared with wild-type hearts; however, ischemic preconditioning was unaffected. To investigate acute reductions in mitochondrial HKII levels, wild-type hearts were treated with a TAT control peptide or a TAT-HK peptide that contained the binding motif of HKII to mitochondria, thereby disrupting the mitochondrial HKII association. Mitochondrial hexokinase was determined by HKI and HKII immunogold labeling and electron microscopy analysis. Low-dose (200 nmol/L) TAT-HK treatment significantly decreased mitochondrial HKII levels without affecting baseline cardiac function but dramatically increased ischemia-reperfusion injury and prevented the protective effects of ischemic preconditioning. Treatment for 15 minutes with high-dose (10 &mgr;mol/L) TAT-HK resulted in acute mitochondrial depolarization, mitochondrial swelling, profound contractile impairment, and severe cardiac disintegration. The detrimental effects of TAT-HK treatment were mimicked by mitochondrial membrane depolarization after mild mitochondrial uncoupling that did not cause direct mitochondrial permeability transition opening. Conclusions: Acute low-dose dissociation of HKII from mitochondria in heart prevented ischemic preconditioning, whereas high-dose HKII dissociation caused cessation of cardiac contraction and tissue disruption, likely through an acute mitochondrial membrane depolarization mechanism. The results suggest that the association of HKII with mitochondria is essential for the protective effects of ischemic preconditioning and normal cardiac function through maintenance of mitochondrial potential.


Diabetes | 2012

GSH or Palmitate Preserves Mitochondrial Energetic/Redox Balance, Preventing Mechanical Dysfunction in Metabolically Challenged Myocytes/Hearts From Type 2 Diabetic Mice

Carlo G. Tocchetti; Viviane Caceres; Brian A. Stanley; Chaoqin Xie; Sa Shi; Walter H. Watson; Brian O’Rourke; Regina C. Spadari-Bratfisch; Sonia Cortassa; Fadi G. Akar; Nazareno Paolocci; Miguel A. Aon

In type 2 diabetes, hyperglycemia and increased sympathetic drive may alter mitochondria energetic/redox properties, decreasing the organelle’s functionality. These perturbations may prompt or sustain basal low-cardiac performance and limited exercise capacity. Yet the precise steps involved in this mitochondrial failure remain elusive. Here, we have identified dysfunctional mitochondrial respiration with substrates of complex I, II, and IV and lowered thioredoxin-2/glutathione (GSH) pools as the main processes accounting for impaired state 4→3 energetic transition shown by mitochondria from hearts of type 2 diabetic db/db mice upon challenge with high glucose (HG) and the β-agonist isoproterenol (ISO). By mimicking clinically relevant conditions in type 2 diabetic patients, this regimen triggers a major overflow of reactive oxygen species (ROS) from mitochondria that directly perturbs cardiac electro-contraction coupling, ultimately leading to heart dysfunction. Exogenous GSH or, even more so, the fatty acid palmitate rescues basal and β-stimulated function in db/db myocyte/heart preparations exposed to HG/ISO. This occurs because both interventions provide the reducing equivalents necessary to counter mitochondrial ROS outburst and energetic failure. Thus, in the presence of poor glycemic control, the diabetic patient’s inability to cope with increased cardiac work demand largely stems from mitochondrial redox/energetic disarrangements that mutually influence each other, leading to myocyte or whole-heart mechanical dysfunction.


Molecular Therapy | 2014

Cardiac I-1c Overexpression With Reengineered AAV Improves Cardiac Function in Swine Ischemic Heart Failure

Kiyotake Ishikawa; Kenneth Fish; Lisa Tilemann; Kleopatra Rapti; Jaume Aguero; Carlos G. Santos-Gallego; Ahyoung Lee; Ioannis Karakikes; Chaoqin Xie; Fadi G. Akar; Yuichi J. Shimada; Judith K. Gwathmey; Aravind Asokan; Scott W.J. McPhee; Jade Samulski; Richard Jude Samulski; Daniel C. Sigg; Thomas Weber; Evangelia G. Kranias; Roger J. Hajjar

Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 10(13) vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 10(12) vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure-volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF.


The Journal of Physiology | 2011

Biophysical properties and functional consequences of reactive oxygen species (ROS)‐induced ROS release in intact myocardium

Nora Biary; Chaoqin Xie; Justin Kauffman; Fadi G. Akar

Non‐Technical Summary  Oxidative stress is a hallmark of various cardiovascular disorders that results in cellular dysfunction and death. Reactive oxygen species (ROS)‐induced ROS release (RIRR) is a fundamental mechanism which amplifies ROS levels within the cardiomyocyte resulting in cellular oxidative stress. Despite elegant studies describing the phenomenon of RIRR in isolated myocytes, its biophysical properties and functional consequences in intact myocardium remain unclear. Here, we use ROS imaging to extend the concept of RIRR to the level of the intact heart. We establish regenerative superoxide production as the mediator of RIRR‐related arrhythmias and reveal their strong dependence on a key mitochondrial channel, known as the inner membrane anion channel (IMAC). We demonstrate the efficacy of suppressing RIRR and related arrhythmias either by pharmacologically blocking IMAC or scavenging ROS using a synthetic superoxide dismutase/catalase mimetic.


Frontiers in Physiology | 2014

Functional crosstalk between the mitochondrial PTP and KATP channels determine arrhythmic vulnerability to oxidative stress

Chaoqin Xie; Justin Kauffman; Fadi G. Akar

Background: Mitochondrial permeability transition pore (mPTP) opening is a terminal event leading to mitochondrial dysfunction and cell death under conditions of oxidative stress (OS). However, mPTP blockade with cyclosporine A (CsA) has shown variable efficacy in limiting post-ischemic dysfunction and arrhythmias. We hypothesized that strong feedback between energy dissipating (mPTP) and cardioprotective (mKATP) channels determine vulnerability to OS. Methods and Results: Guinea pig hearts (N = 61) were challenged with H2O2 (200 μM) to elicit mitochondrial membrane potential (ΔΨm) depolarization. High-resolution optical mapping was used to measure ΔΨm or action potentials (AP) across the intact heart. Hearts were treated with CsA (0.1 μM) under conditions that altered the activity of mKATP channels either directly or indirectly via its regulation by protein kinase C. mPTP blockade with CsA markedly blunted (P < 0.01) OS-induced ΔΨm depolarization and delayed loss of LV pressure (LVP), but did not affect arrhythmia propensity. Surprisingly, prevention of mKATP activation with the chemical phosphatase BDM reversed the protective effect of CsA, paradoxically exacerbating OS-induced ΔΨm depolarization and accelerating arrhythmia onset in CsA treated compared to untreated hearts (P < 0.05). To elucidate the putative molecular mechanisms, mPTP inhibition by CsA was tested during conditions of selective PKC inhibition or direct mKATP channel activation or blockade. Similar to BDM, the specific PKC inhibitor, CHE (10 μM) did not alter OS-induced ΔΨm depolarization directly. However, it completely abrogated CsA-mediated protection against OS. Direct pharmacological blockade of mKATP, a mitochondrial target of PKC signaling, equally abolished the protective effect of CsA on ΔΨm depolarization, whereas channel activation with 30 μM Diazoxide protected against ΔΨm depolarization (P < 0.0001). Conditions that prevented mKATP activation either directly or indirectly via PKC inhibition led to accelerated ΔΨm depolarization and early onset of VF in response to OS. Investigation of the electrophysiological substrate revealed accelerated APD shortening in response to OS in arrhythmia-prone hearts. Conclusions: Cardioprotection by CsA requires mKATP channel activation through a PKC-dependent pathway. Increasing mKATP activity during CsA administration is required for limiting OS-induced electrical dysfunction.


Journal of the American College of Cardiology | 2015

The Classically Cardioprotective Agent Diazoxide Elicits Arrhythmias in Type 2 Diabetes Mellitus.

Chaoqin Xie; Jun Hu; Lukas J. Motloch; Basil S. Karam; Fadi G. Akar

BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with an enhanced propensity for ventricular tachyarrhythmias (VTs) under conditions of metabolic demand. Activation of mitochondrial adenosine triphosphate-sensitive potassium (KATP) channels by low-dose diazoxide (DZX) improves hypoglycemia-related complications, metabolic function, and triglyceride and free fatty acid levels and reverses weight gain in T2DM. OBJECTIVES In this study, we hypothesized that DZX prevents ischemia-mediated arrhythmias in T2DM via its putative cardioprotective and antidiabetic property. METHODS Zucker obese diabetic fatty (ZO) rats (n = 43) with T2DM were studied. Controls consisted of Zucker lean (ZL; n = 13) and normal Sprague-Dawley (SprD; n = 30) rats. High-resolution optical action potential mapping was performed before and during challenge with no-flow ischemia for 12 min. RESULTS Electrophysiological properties were relatively stable in T2DM hearts at baseline. In contrast, ischemia uncovered major differences between groups, because action potential duration (APD) in T2DM failed to undergo progressive adaptation to ischemic challenge. DZX promoted the incidence of arrhythmias, because all DZX-treated T2DM hearts exhibited ischemia-induced VTs that persisted on reperfusion. In contrast, untreated T2DM and controls did not exhibit VT during ischemia. Unlike DZX, pinacidil promoted ischemia-mediated arrhythmias in both control and T2DM hearts. Rapid and spatially heterogeneous shortening of APD preceded the onset of arrhythmias in T2DM. DZX-mediated proarrhythmia in T2DM was not related to changes in the messenger ribonucleic acid expression of Kir6.1, Kir6.2, SUR1A, SUR1B, SUR2A, SUR2B, or ROMK (renal outer medullary potassium channel). CONCLUSIONS Ischemia uncovers a paradoxical resistance of T2DM hearts to APD adaptation. DZX reverses this property, resulting in rapid and heterogeneous APD shortening. This promotes reentrant VT during ischemia. DZX should be avoided in diabetic patients at risk of ischemic events.


Circulation Research | 2013

Pathophysiological Consequences of TAT-HKII Peptide Administration Are Independent of Impaired Vascular Function and Ensuing Ischemia

Rianne Nederlof; Chaoqin Xie; Otto Eerbeek; Anneke Koeman; Dan M.J. Milstein; Markus W. Hollmann; Egbert G. Mik; Alice Warley; Richard Southworth; Fadi G. Akar; Coert J. Zuurbier

Rationale: We have shown that partial dissociation of hexokinase II (HKII) from mitochondria in the intact heart using low-dose transactivating transcriptional factor (TAT)-HKII (200 nmol/L) prevents the cardioprotective effects of ischemic preconditioning, whereas high-dose TAT-HKII (10 &mgr;mol/L) administration results in rapid myocardial dysfunction, mitochondrial depolarization, and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely because of vasoconstriction and ensuing ischemia. Objective: To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium. Methods and Results: Using a variety of complementary techniques, including mitochondrial membrane potential (&Dgr;&psgr;m) imaging, high-resolution optical action potential mapping, analysis of lactate production, nicotinamide adenine dinucleotide epifluorescence, lactate dehydrogenase release, and electron microscopy, we provide direct evidence that refutes the notion that acute myocardial dysfunction by high-dose TAT-HKII peptide administration is a consequence of impaired vascular function. Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of ischemic preconditioning, is not associated with ischemia or ischemic injury. Conclusions: Our findings challenge the notion that the effects of TAT-HKII are attributable to impaired vascular function and ensuing ischemia, thereby lending further credence to the role of mitochondria-bound HKII as a critical regulator of cardiac function, ischemia-reperfusion injury, and cardioprotection by ischemic preconditioning.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Glutathione oxidation unmasks proarrhythmic vulnerability of chronically hyperglycemic guinea pigs

Chaoqin Xie; Nora Biary; Carlo G. Tocchetti; Miguel A. Aon; Nazareno Paolocci; Justin Kauffman; Fadi G. Akar

Chronic hyperglycemia in type-1 diabetes mellitus is associated with oxidative stress (OS) and sudden death. Mechanistic links remain unclear. We investigated changes in electrophysiological (EP) properties in a model of chronic hyperglycemia before and after challenge with OS by GSH oxidation and tested reversibility of EP remodeling by insulin. Guinea pigs survived for 1 mo following streptozotocin (STZ) or saline (sham) injection. A treatment group received daily insulin for 2 wk to reverse STZ-induced hyperglycemia (STZ + Ins). EP properties were measured using high-resolution optical action potential mapping before and after challenge of hearts with diamide. Despite elevation of glucose levels in STZ compared with sham-operated (P = 0.004) and STZ + Ins (P = 0.002) animals, average action potential duration (APD) and arrhythmia propensity were not altered at baseline. Diamide promoted early (<10 min) formation of arrhythmic triggers reflected by a higher arrhythmia scoring index in STZ (P = 0.045) and STZ + Ins (P = 0.033) hearts compared with sham-operated hearts. APD heterogeneity underwent a more pronounced increase in response to diamide in STZ and STZ + Ins hearts compared with sham-operated hearts. Within 30 min, diamide resulted in spontaneous incidence of ventricular tachycardia and ventricular fibrillation (VT/VF) in 3/6, 2/5, 1/5, and 0/4 STZ, STZ + Ins, sham-operated, and normal hearts, respectively. Hearts prone to VT/VF exhibited greater APD heterogeneity (P = 0.010) compared with their VT/VF-free counterparts. Finally, altered EP properties in STZ were not rescued by insulin. In conclusion, GSH oxidation enhances APD heterogeneity and increases arrhythmia scoring index in a guinea pig model of chronic hyperglycemia. Despite normalization of glycemic levels by insulin, these proarrhythmic properties are not reversed, suggesting the importance of targeting antioxidant defenses for arrhythmia suppression.


JACC: Basic to Translational Science | 2017

Increased Afterload Following Myocardial Infarction Promotes Conduction-Dependent Arrhythmias That Are Unmasked by Hypokalemia

Lukas J. Motloch; Kiyotake Ishikawa; Chaoqin Xie; Jun Hu; Jaume Aguero; Kenneth Fish; Roger J. Hajjar; Fadi G. Akar

Visual Abstract

Collaboration


Dive into the Chaoqin Xie's collaboration.

Top Co-Authors

Avatar

Fadi G. Akar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jun Hu

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Roger J. Hajjar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lukas J. Motloch

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin Kauffman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Miguel A. Aon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nora Biary

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge