Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaoqun Lu is active.

Publication


Featured researches published by Chaoqun Lu.


Journal of Geophysical Research | 2007

Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data

Chaoqun Lu; Hanqin Tian

[1] Anthropogenic nitrous pollutant emissions in China significantly increased during the last decades, which contributed to the accelerated nitrogen ( N) deposition. In order to characterize spatial pattern of nitrogen deposition, we employed the kriging technique to interpolate sampling data of precipitation chemistry and ambient air concentration from site-network observations over China. The estimation of wet deposition in China was limited to aqueous NO(3)(-) and NH(4)(+), while ambient NO(2) was the only species involved in the predicted dry deposition fluxes. To obtain wet deposition fluxes, precipitation concentration was multiplied by 20-year mean precipitation amounts with a resolution of 10 x 10 km. Dry deposition fluxes were products of the interpolated ambient NO(2) concentration and deposition velocities modeled for the main vegetation types in China. The total deposition rates of wet and dry deposition peaked over the central south China, with maximum values of 63.53 kg N ha(-1) yr(-1), and an average value of 12.89 kg N ha(-1) yr(-1). With ambient NO(2) concentration data spanning from the year 1990 through 2003, we detected and evaluated trends in the time series of the annual values of atmospheric NO(2) concentration. Significant upward trends at 21 of 102 sites were exhibited, with median percent change of 61.45% over the period 1990-2003. In addition, spatially continuous patterns of dry deposition fluxes based on ambient NO(2) measurements in two 5-year phases, 9 years apart, were carried out. On average, there was a rise of 7.66% in NO(2) dry deposition during 9 years throughout China.


Journal of Geophysical Research | 2011

Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming

Hanqin Tian; Xiaofeng Xu; Chaoqun Lu; Mingliang Liu; Wei Ren; Guangsheng Chen; Jerry M. Melillo; Jiyuan Liu

Chinas terrestrial ecosystems have been recognized as an atmospheric CO(2) sink; however, it is uncertain whether this sink can alleviate global warming given the fluxes of CH(4) and N(2)O. In this study, we used a process-based ecosystem model driven by multiple environmental factors to examine the net warming potential resulting from net exchanges of CO(2), CH(4), and N(2)O between Chinas terrestrial ecosystems and the atmosphere during 1961-2005. In the past 45 years, Chinas terrestrial ecosystems were found to sequestrate CO(2) at a rate of 179.3 Tg C yr(-1) with a 95% confidence range of (62.0 Tg C yr(-1), 264.9 Tg C yr(-1)) while emitting CH(4) and N(2)O at rates of 8.3 Tg C yr(-1) with a 95% confidence range of (3.3 Tg C yr(-1), 12.4 Tg C yr(-1)) and 0.6 Tg N yr(-1) with a 95% confidence range of (0.2 Tg N yr(-1), 1.1 Tg N yr(-1)), respectively. When translated into global warming potential, it is highly possible that Chinas terrestrial ecosystems mitigated global climate warming at a rate of 96.9 Tg CO(2)eq yr(-1) (1 Tg = 10(12) g), substantially varying from a source of 766.8 Tg CO(2)eq yr(-1) in 1997 to a sink of 705.2 Tg CO(2)eq yr(-1) in 2002. The southeast and northeast of China slightly contributed to global climate warming; while the northwest, north, and southwest of China imposed cooling effects on the climate system. Paddy land, followed by natural wetland and dry cropland, was the largest contributor to national warming potential; forest, followed by woodland and grassland, played the most significant role in alleviating climate warming. Our simulated results indicate that CH(4) and N(2)O emissions offset approximately 84.8% of terrestrial CO(2) sink in China during 1961-2005. This study suggests that the relieving effects of Chinas terrestrial ecosystems on climate warming through sequestering CO(2) might be gradually offset by increasing N(2)O emission, in combination with CH(4) emission.


Nature | 2016

The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

Hanqin Tian; Chaoqun Lu; Philippe Ciais; Anna M. Michalak; Josep G. Canadell; Eri Saikawa; Deborah N. Huntzinger; Kevin Robert Gurney; Stephen Sitch; Bowen Zhang; Jia Yang; P. Bousquet; Lori Bruhwiler; Guangsheng Chen; E. J. Dlugokencky; Pierre Friedlingstein; Jerry M. Melillo; Shufen Pan; Benjamin Poulter; Ronald G. Prinn; Marielle Saunois; Christopher Schwalm; Steven C. Wofsy

The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.


Frontiers in Ecology and the Environment | 2012

Effects of Elevated Carbon Dioxide and Increased Temperature on Methane and Nitrous Oxide Fluxes: Evidence from Field Experiments

Feike A. Dijkstra; Stephen A. Prior; G. Brett Runion; H. Allen Torbert; Hanqin Tian; Chaoqun Lu; Rodney T. Venterea

Climate change could alter terrestrial ecosystems, which are important sources and sinks of the potent green-house gases (GHGs) nitrous oxide (N2O) and methane (CH4), in ways that either stimulate or decrease the magnitude and duration of global warming. Using manipulative field experiments, we assessed how N2O and CH4 soil fluxes responded to a rise in atmospheric carbon dioxide (CO2) concentration and to increased air temperature. Nitrous oxide and CH4 responses varied greatly among studied ecosystems. Elevated CO2 often stimulated N2O emissions in fertilized systems and CH4 emissions in wetlands, peatlands, and rice paddy fields; both effects were stronger in clayey soils than in sandy upland soils. Elevated temperature, however, impacted N2O and CH4 emissions inconsistently. Thus, the effects of elevated CO2 concentrations on N2O and CH4 emissions may further enhance global warming, but it remains unclear whether increased temperature generates positive or negative feedbacks on these GHGs in terrestri...


Ecological Applications | 2012

Effect of nitrogen deposition on China's terrestrial carbon uptake in the context of multifactor environmental changes

Chaoqun Lu; Hanqin Tian; Mingliang Liu; Wei Ren; Xiaofeng Xu; Guangsheng Chen; Chi Zhang

The amount of atmospheric nitrogen (N) deposited on the land surface has increased globally and by nearly five times in China from 1901 to 2005. Little is known about how elevated reactive N input has affected the carbon (C) sequestration capability of Chinas terrestrial ecosystems, largely due to the lack of reliable data on N deposition. Here we have used a newly developed data set of historical N deposition at a spatial resolution of 10 km x 10 km in combination with other gridded historical information on climate, atmospheric composition, land use, and land management practices to drive a process-based ecosystem model, the dynamic land ecosystem model (DLEM) for examining how increasing N deposition and its interactions with other environmental changes have affected C fluxes and storage in Chinas terrestrial ecosystems during 1901-2005. Our model simulations indicate that increased N deposition has resulted in a net C sink of 62 Tg C/yr (1 Tg = 1012 g) in Chinas terrestrial ecosystems, totaling up to 6.51 Pg C (1 Pg = 10(15) g) in the past 105 years. During the study period, the N-induced C sequestration can compensate for more than 25% of fossil-fuel CO2 emission from China. The largest C sink was found in southeast China, a region that experienced the most significant increase of N deposition in the period 1901-2005. However, the net primary productivity induced by per-unit N deposition (referred to as ecosystem N use efficiency, ENUE, in this paper) has leveled off or declined since the 1980s. This indicates that part of the deposited N may not be invested to stimulate plant growth, but instead leave the ecosystem by various pathways. Except shrubland and northwest/southwest China, signs of N saturation are apparent in the rest major biome types and regions, with ENUE peaking in the 1980s and leveling off or declining thereafter. Therefore, to minimize the excessive N pollution while keeping the N-stimulated C uptake in Chinas terrestrial ecosystems, optimized management practices should be taken to increase N use efficiency rather than to keep raising N input level in the near future.


Environmental Pollution | 2012

Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States

Chi Zhang; Hanqin Tian; Guangsheng Chen; Arthur H. Chappelka; Xiaofeng Xu; Wei Ren; Dafeng Hui; Mingliang Liu; Chaoqun Lu; Shufen Pan; Graeme Lockaby

Using a process-based Dynamic Land Ecosystem Model, we assessed carbon dynamics of urbanized/developed lands in the Southern United States during 1945-2007. The results indicated that approximately 1.72 (1.69-1.77) Pg (1P = 10(15)) carbon was stored in urban/developed lands, comparable to the storage of shrubland or cropland in the region. Urbanization resulted in a release of 0.21 Pg carbon to the atmosphere during 1945-2007. Pre-urbanization vegetation type and time since land conversion were two primary factors determining the extent of urbanization impacts on carbon dynamics. After a rapid decline of carbon storage during land conversion, an urban ecosystem gradually accumulates carbon and may compensate for the initial carbon loss in 70-100 years. The carbon sequestration rate of urban ecosystem diminishes with time, nearly disappearing in two centuries after land conversion. This study implied that it is important to take urbanization effect into account for assessing regional carbon balance.


Global Biogeochemical Cycles | 2015

Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

Hanqin Tian; Chaoqun Lu; Jia Yang; Kamaljit Banger; Deborah N. Huntzinger; Christopher R. Schwalm; Anna M. Michalak; R. B. Cook; Philippe Ciais; Daniel J. Hayes; Maoyi Huang; Akihiko Ito; Atul K. Jain; Huimin Lei; Jiafu Mao; Shufen Pan; Wilfred M. Post; Shushi Peng; Benjamin Poulter; Wei Ren; Daniel M. Ricciuto; Kevin Schaefer; Xiaoying Shi; Bo Tao; Weile Wang; Yaxing Wei; Qichun Yang; Bowen Zhang; Ning Zeng

Abstract Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land‐atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO2) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process‐based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century‐long (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project and two observation‐based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 1015 g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr−1 with a median value of 51 Pg C yr−1 during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross‐model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from −70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble‐estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO2 and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly among models. Model representations of temperature and moisture sensitivity, nutrient limitation, and land use partially explain the divergent estimates of global SOC stocks and soil C fluxes in this study. In addition, a major source of systematic error in model estimations relates to nonmodeled SOC storage in wetlands and peatlands, as well as to old C storage in deep soil layers.


Tellus B | 2011

Spatial and temporal patterns of CO 2 and CH 4 fluxes in China's croplands in response to multifactor environmental changes

Wei Ren; Hanqin Tian; Xiaofeng Xu; Mingliang Liu; Chaoqun Lu; Guangsheng Chen; Jerry M. Melillo; John M. Reilly; Jiyuan Liu

The spatial and temporal patterns of CO2 and CH4 fluxes in China’s croplands were investigated and attributed to multifactor environmental changes using the agricultural module of the Dynamic Land Ecosystem Model (DLEM), a highly integrated process-based ecosystem model. During 1980-2005 modelled results indicated that China’s croplands acted as a carbon sink with an average carbon sequestration rate of 33.4 TgC yr-1 (1 Tg = 1012 g). Both the highest net CO2 uptake rate and the largest CH4 emission rate were found in southeast region of China’s croplands. Of primary influences were land-cover and land-use change, atmospheric CO2 and nitrogen deposition, which accounted for 76%, 42% and 17% of the total carbon sequestration in China’s croplands during the study period, respectively. The total carbon losses due to elevated ozone and climate variability/change were equivalent to 27% and 9% of the total carbon sequestration, respectively. Our further analysis indicated that nitrogen fertilizer application accounted for 60% of total national carbon uptake in cropland, whereas changes in paddy field areas mainly determined the variability of CH4 emissions. Our results suggest that improving air quality by means such as reducing ozone concentration and optimizing agronomic practices can enhance carbon sequestration capacity of China’s croplands.


Ecosystem Health and Sustainability | 2015

Global Methane and Nitrous Oxide Emissions from Terrestrial Ecosystems Due to Multiple Environmental Changes

Hanqin Tian; Guangsheng Chen; Chaoqun Lu; Xiaofeng Xu; Wei Ren; Bowen Zhang; Kamaljit Banger; Bo Tao; Shufen Pan; Mingliang Liu; Chi Zhang; Lori Bruhwiler; Steven C. Wofsy

Abstract Greenhouse gas (GHG)‐induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH4) and nitrous oxide (N2O) are the two most important GHGs after carbon dioxide (CO2), but their regional and global budgets are not well known. In this study, we applied a process‐based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH4 and N2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, and nitrogen fertilizer use. The estimated CH4 and N2O emissions from global land ecosystems during 1981–2010 were 144.39 ± 12.90 Tg C/yr (mean ± 2 SE; 1 Tg = 1012 g) and 12.52 ± 0.74 Tg N/yr, respectively. Our simulations indicated a significant (P < 0.01) annually increasing trend for CH4 (0.43 ± 0.06 Tg C/yr) and N2O (0.14 ± 0.02 Tg N/yr) in the study period. CH4 and N2O emissions increased significantly in most climatic zones and continents, especially in the tropical regions and Asia. The most rapid increase in CH4 emission was found in natural wetlands and rice fields due to increased rice cultivation area and climate warming. N2O emission increased substantially in all the biome types and the largest increase occurred in upland crops due to increasing air temperature and nitrogen fertilizer use. Clearly, the three major GHGs (CH4, N2O, and CO2) should be simultaneously considered when evaluating if a policy is effective to mitigate climate change.


Environmental Research Letters | 2015

Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

Jiafu Mao; Wenting Fu; Xiaoying Shi; Daniel M. Ricciuto; Joshua B. Fisher; Robert E. Dickinson; Yaxing Wei; Willis Shem; Shilong Piao; Kaicun Wang; Christopher R. Schwalm; Hanqin Tian; Mingquan Mu; Altaf Arain; Philippe Ciais; R. B. Cook; Yongjiu Dai; Daniel J. Hayes; Forrest M. Hoffman; Maoyi Huang; Suo Huang; Deborah N. Huntzinger; Akihiko Ito; Atul K. Jain; Anthony W. King; Huimin Lei; Chaoqun Lu; Anna M. Michalak; N. C. Parazoo; Changhui Peng

We examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982 to 2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increasing trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded decreasing trends in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increasing nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

Collaboration


Dive into the Chaoqun Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Ren

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangsheng Chen

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bo Tao

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Mingliang Liu

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaofeng Xu

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge