Chaosheng Zhang
National University of Ireland, Galway
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chaosheng Zhang.
Applied Geochemistry | 2002
Chaosheng Zhang; Lijun Wang; Guosheng Li; Shuangshuang Dong; Jingrong Yang; Xiuli Wang
Abstract In the intertidal flats of Bohai Bay, China, the spatial distribution of the grain size of sediments becomes coarser from landward to seaward. To study the grain size effect on multi-element concentrations in sediments, samples along the coastline and 3 horizontal cross-sections were collected from the intertidal flats of Bohai Bay, China, in 1998. Total concentrations of 49 elements, including alkali, alkaline earth, trace metal, rare and rare earth elements, were measured by ICP–AES, ICP–MS and INAA. The results show that sediment texture plays a controlling role on the concentrations and their spatial distribution. Principal component analysis and cluster analysis were carried out based on the grain sizes of the sediments, and the samples were classified into 3 groups: mud, silt-mud and silt. Significant differences among the element concentrations in the 3 groups were observed, and the concentrations of the elements in each group are reported in this study. Most of the elements have their highest concentrations in the fine grained mud samples, in comparison with the silt and silt-mud samples, with clay minerals possibly playing an important role. In contrast, concentrations of Ba, Sr, Hf, and Zr are elevated in the coarse silt samples. Ba and Sr may reside in feldspars, while Zr and Hf are present in zircons. Landward to seaward spatial variation of element concentrations in the sediments is observed, which is in line with the spatial distribution of the grain size and is related to the seawater hydrological dynamics in the intertidal flats.
Applied Geochemistry | 2003
David McGrath; Chaosheng Zhang
Abstract Soil organic C (SOC) concentrations in topsoil samples taken at 678 sites in the grassland of Ireland were investigated using statistics and geostatistics. SOC concentrations (Walkley–Black method) follow a lognormal distribution, with a median and geometric mean of 5.0%, and an arithmetic mean of 5.3%. Statistically significant (P
Science of The Total Environment | 2008
Chaosheng Zhang; Lin Luo; Weilin Xu; Valerie Ledwith
Pollution hotspots in urban soils need to be identified for better environmental management. It is important to know if there are hotspots and if the hotspots are statistically significant. In this study identification of pollution hotspots was investigated using Pb concentrations in urban soils of Galway City in Ireland as an example, and the influencing factors on results of hotspot identification were investigated. The index of local Morans I is a useful tool for identifying pollution hotspots of Pb pollution in urban soils, and for classifying them into spatial clusters and spatial outliers. The results were affected by the definition of weight function, data transformation and existence of extreme values. Compared with the results for the positively skewed raw data, the transformed data and data with extreme values excluded revealed a larger area for the high value spatial clusters in the city centre. While it is hard to decide the best way of using this index, it is suggested that all these influencing factors should be considered until reasonable and reliable results are obtained. GIS mapping can be applied to help evaluate the results via visualization of the spatial patterns. Meanwhile, selected pollution hotspots (extreme values) in this study were confirmed by re-analyses and re-sampling.
Environmental Science & Technology | 2010
Shiming Ding; Di Xu; Qin Sun; Hongbin Yin; Chaosheng Zhang
Measurement of dissolved reactive phosphorus (DRP) by the diffusive gradients in thin films (DGT) technique was investigated using a new binding phase. Half-dried amorphous zirconium oxide (with 50 ± 5% of water content) was mixed with acrylamide solution for the preparation of the new binding phase. The resulting binding gel had a high binding capacity (223 μg P cm(-2)) for phosphate. The solution of NaOH (1 M) was used for elution of phosphate from the gel, and an elution efficiency of 0.95 was obtained. A test of DGT uptake with this gel showed its dependence on temperature, and there was no influence of pH (3 to 10) and ionic strength (10 nM to 0.1 M). Its capacity for DGT response exceeded 100 μg P cm(-2), corresponding to a DRP concentration of more than 20 mg L(-1) for a 24 h deployment with a standard DGT device at 25 °C, which was at least 50 times of the Fe-oxide gel commonly used in the present DGT technique. Measurements with this high-capacity DGT technique in a laboratory microcosm of homogeneously mixed sediments gave smooth and reproducible mass-depth profiles. This technique was well demonstrated by in situ measurements in algal- and macrophyte-dominated regions of Lake Taihu. The DGT-measured concentrations of DRP were on average 20% and 40% of the DRP concentrations in pore waters, respectively, indicating a partial resupply of the sediments to the pore waters with DRP.
Applied Geochemistry | 1998
Chaosheng Zhang; Lijun Wang; Shen Zhang; Xiuxia Li
Abstract Water, suspended matter, and sediment samples were taken from 8 locations along the Yangtze River in 1992. The concentration and speciation (exchangeable, bound to carbonates, bound to Fe–Mn oxides, bound to organic matter, and residual forms) of rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb, and Lu) were determined by instrumental neutron activation analysis (INAA). The contents of the soluble fraction of REEs in the river are low, and REEs mainly reside in particulate form. In the particles, the chondrite-normalized distribution patterns show significant LREE enrichment and Eu-depletion. While normalized to shales, both sediments and suspended matter samples show relative LREE enrichment and HREE depletion. REEs are relatively enriched in fine-grained fractions of the sediments. The speciation characteristics of REEs in the sediments and suspended matter are very similar. The amount of the five forms follows the order: residual>>bound to organic matter∼bound to Fe–Mn oxides>bound to carbonates>>exchangeable. About 65 to 85% of REEs in the particles exist in the residual form, and the exchangeable form is very low. High proportions of residual REEs reveal that REEs in sediments and suspended matter are controlled by their abundances in the earths crust. Carbonate, Fe–Mn oxide and organic fractions of REEs in sediments account for 2.4–6.9%, 5.2–11.1%, and 7.3–14.0% of the total contents respectively. They are similar to those in the suspended matter. This shows that carbonates, Fe–Mn oxides and organic matter play important roles during the particle-water interaction processes. By normalization to shales, the 3 forms of REEs follow convex shapes according to atomic number with middle REE (Sm, Eu, and Tb) enrichment, while light REE and heavy REE are depleted.
Journal of Rare Earths | 2008
Tao Liang; Shiming Ding; Wenchong Song; Zhongyi Chong; Chaosheng Zhang; Haitao Li
Abstract Studies were carried out on several aspects of rare earth elements (REEs), such as the theory and practice of their applications in agriculture, their geochemical behaviors in natural and agricultural ecosystems, the mechanisms for the increase of crop yield using REE fertilizer, and their toxicology. However, limited knowledge was available for the transfer processes and the features and mechanisms of distribution and fractionations of REEs inside plants. The characteristics of REE fractionations in plants can be used to “trace” the pathway of REE transportation from soils (solution) to plants. A better understanding of the mechanisms of REE fractionations was helpful to investigate the controlling factors, including both the internal and the external ones. The characteristics and mechanisms of REE fractionations in plants and their significance were reviewed. Furthermore, the prospect for these fields was discussed, in hope of providing a new way in studying the bioavailability of REEs and heavy metals.
Environmental Science & Technology | 2013
Di Xu; Yifei Chen; Shiming Ding; Qin Sun; Yan Wang; Chaosheng Zhang
Developing a technique to track the release of phosphorus (P) and iron (Fe) simultaneously in sediments would be very useful in deepening our understanding of the internal loading process of P coupled with Fe cycling in aquatic systems. In this study, a new technique was established to measure simultaneously the dissolved reactive P (DRP) and dissolved Fe primarily released from sediment solids based on the diffusive gradients in thin films (DGT) theory. A mixed binding gel (ZrO-Chelex gel) used for assembling DGT was developed for simultaneous uptake of DRP and dissolved Fe(II) using amorphous zirconium hydroxide (Zr-oxide) and Chelex-100 resin as binding agents. Simultaneous measurements of DRP and dissolved Fe(II) with the ZrO-Chelex DGT were validated in solution and were independent of solution pH and ionic strength in normal environments. The capacities of the ZrO-Chelex DGT for measurements of DRP and dissolved Fe(II) were 90 μg P cm(-2) and 75 μg Fe cm(-2), with the latter being greater than that (45 μg Fe cm(-2)) observed with the Chelex-100 resin DGT commonly used in DGT measurements of metals. Microcosm experiments further confirmed the feasibility of the ZrO-Chelex DGT for simultaneous measurement of P and Fe in sediments, with a higher concentration of Fe being measured due to this methods higher capacity compared with the Chelex-100 resin DGT.
Applied Geochemistry | 2001
Chaosheng Zhang; Lijun Wang
Sediment samples were taken along the West, North, and East rivers of the Pearl River system at 28 locations in 1998, and a total of 49 elements were determined by ICP–AES, ICP–MS and INAA. The probability features of the datasets were studied, and the average concentrations of these elements in sediments of the three rivers were calculated. Significant differences in element concentrations among the three rivers were observed and the results were confirmed by statistical tests including analysis of variance (ANOVA), Kruskal–Wallis test, and t-test. Spatial distribution maps of element concentrations were produced using a geographical information system (GIS). The immobile trace elements (such as Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are enriched in the West River where limestone dominates the rock types in the watershed. Because of the strong weathering, immobile trace elements are enriched and reside in secondary minerals of the weathering products. All three rivers have high concentrations of rare earth elements (REEs) because of strong weathering, but relatively higher concentrations of REEs are observed in sediments of the East River where granite dominates the rock type. Granite contains high concentrations of REEs and the sediments have inherited this feature from their bedrock. Alkaline element (Li, Na, K, Rb, and Cs) concentrations are elevated in sediments of the East River, these may reside in granitic primary minerals. Relatively high concentrations of alkaline earth elements (Mg, Ca, Sr, and Ba) are observed in the West River, inherited from the limestone bedrock. High Pb and Bi concentrations are found in the North River and are caused by Pb mineralization and the discharge of a smelter in the upper reaches of the river. However, statistical tests did not indicate a significant difference between Pb concentrations in the North River and the other two rivers, which suggests that statistical results should be carefully used and explained.
Science of The Total Environment | 2012
Di Xu; Wei Wu; Shiming Ding; Qin Sun; Chaosheng Zhang
Characterization of pore water chemistry necessitates measurements of the chemical components at a high spatial resolution due to the heterogeneous nature of sediments. In this study, a novel high-resolution dialysis technique was developed for rapid sampling of dissolved reactive phosphate (DRP) and ferrous iron (Fe) in pore water at a vertical resolution of 2mm. This technique employed a mini dialysis device (peeper) with a deployment time of 2 days in sediments for equilibration. Operational procedures following retrieval of the peeper include in situ freezing of the pore water samples through spraying commercial carbon dioxide snow, frozen storage of the pore water samples, and quick analysis of chemicals in pore water samples using 384-well microplate photometric methods. The sample consumption for each parameter can be minimized to 6μL, which allowed simultaneous determination of DRP and ferrous iron in a peeper device. Laboratory tests showed that the technique was robust enough for the in situ measurements. Field deployment was subsequently performed in three sites of a shallow, eutrophic bay in Lake Taihu of China. Simultaneous determination of DRP and ferrous Fe in all the sites demonstrated a similar behavior of both chemicals in the pore water profiles, verifying the control of P mobilization by Fe in sediments.
Environmental Science & Technology | 2013
Shiming Ding; Yan Wang; Di Xu; Chungang Zhu; Chaosheng Zhang
We report a highly promising technique for the high-resolution imaging of labile phosphorus (P) in sediments and soils in combination with the diffusive gradients in thin films (DGT). This technique was based on the surface coloration of the Zr-oxide binding gel using the conventional molybdenum blue method following the DGT uptake of P to this gel. The accumulated mass of the P in the gel was then measured according to the grayscale intensity on the gel surface using computer-imaging densitometry. A pretreatment of the gel in hot water (85 °C) for 5 d was required to immobilize the phosphate and the formed blue complex in the gel during the color development. The optimal time required for a complete color development was determined to be 45 min. The appropriate volume of the coloring reagent added was 200 times of that of the gel. A calibration equation was established under the optimized conditions, based on which a quantitative measurement of P was obtained when the concentration of P in solutions ranged from 0.04 mg L(-1) to 4.1 mg L(-1) for a 24 h deployment of typical DGT devices at 25 °C. The suitability of the coloration technique was well demonstrated by the observation of small, discrete spots with elevated P concentrations in a sediment profile.