Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaoyang Xue is active.

Publication


Featured researches published by Chaoyang Xue.


Nature Reviews Microbiology | 2007

Sensing the environment: lessons from fungi

Yong Sun Bahn; Chaoyang Xue; Alexander Idnurm; Julian C. Rutherford; Joseph Heitman; Maria E. Cardenas

All living organisms use numerous signal-transduction systems to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we review recent progress in our understanding of how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental cues.


Fems Microbiology Reviews | 2008

Magnificent seven : roles of G protein-coupled receptors in extracellular sensing in fungi

Chaoyang Xue; Yen-Ping Hsueh; Joseph Heitman

G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are responsible for transducing extracellular signals into intracellular responses that involve complex intracellular-signaling networks. This review highlights recent research advances in fungal GPCRs, including classification, extracellular sensing, and G protein-signaling regulation. The involvement of GPCRs in pheromone and nutrient sensing has been studied extensively over the past decade. Following recent advances in fungal genome sequencing projects, a panoply of GPCR candidates has been revealed and some have been documented to play key roles sensing diverse extracellular signals, such as pheromones, sugars, amino acids, nitrogen sources, and even photons. Identification and deorphanization of additional putative GPCRs may require the development of new research tools. Here, we compare research on GPCRs in fungi with information derived from mammalian systems to provide a useful road map on how to better understand ligand-GPCR-G protein interactions in general. We also emphasize the utility of yeast as a discovery tool for systemic studies of GPCRs from other organisms.


PLOS Genetics | 2010

Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in Cryptococcus neoformans

Xiaorong Lin; Jennifer C. Jackson; Marianna Feretzaki; Chaoyang Xue; Joseph Heitman

Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from a unicellular yeast to multicellular hyphae during opposite sex (mating) and unisexual reproduction (same-sex mating). Opposite- and same-sex mating are induced by similar environmental conditions and involve many shared components, including the conserved pheromone sensing Cpk1 MAPK signal transduction cascade that governs the dimorphic switch in C. neoformans. However, the homeodomain cell identity proteins Sxi1α/Sxi2a encoded by the mating type locus that are essential for completion of sexual reproduction following cell–cell fusion during opposite-sex mating are dispensable for same-sex mating. Therefore, identification of downstream targets of the Cpk1 MAPK pathway holds the key to understanding molecular mechanisms governing the two distinct developmental fates. Thus far, homology-based approaches failed to identify downstream transcription factors which may therefore be species-specific. Here, we applied insertional mutagenesis via Agrobacterium-mediated transformation and transcription analysis using whole genome microarrays to identify factors involved in C. neoformans differentiation. Two transcription factors, Mat2 and Znf2, were identified as key regulators of hyphal growth during same- and opposite-sex mating. Mat2 is an HMG domain factor, and Znf2 is a zinc finger protein; neither is encoded by the mating type locus. Genetic, phenotypic, and transcriptional analyses of Mat2 and Znf2 provide evidence that Mat2 is a downstream transcription factor of the Cpk1 MAPK pathway whereas Znf2 functions as a more terminal hyphal morphogenesis determinant. Although the components of the MAPK pathway including Mat2 are not required for virulence in animal models, Znf2, as a hyphal morphology determinant, is a negative regulator of virulence. Further characterization of these elements and their target circuits will reveal genes controlling biological processes central to fungal development and virulence.


PLOS Pathogens | 2012

DNA Mutations Mediate Microevolution between Host-Adapted Forms of the Pathogenic Fungus Cryptococcus neoformans

Denise A. Magditch; Tong-Bao Liu; Chaoyang Xue; Alexander Idnurm

The disease cryptococcosis, caused by the fungus Cryptococcus neoformans, is acquired directly from environmental exposure rather than transmitted person-to-person. One explanation for the pathogenicity of this species is that interactions with environmental predators select for virulence. However, co-incubation of C. neoformans with amoeba can cause a “switch” from the normal yeast morphology to a pseudohyphal form, enabling fungi to survive exposure to amoeba, yet conversely reducing virulence in mammalian models of cryptococcosis. Like other human pathogenic fungi, C. neoformans is capable of microevolutionary changes that influence the biology of the organism and outcome of the host-pathogen interaction. A yeast-pseudohyphal phenotypic switch also happens under in vitro conditions. Here, we demonstrate that this morphological switch, rather than being under epigenetic control, is controlled by DNA mutation since all pseudohyphal strains bear mutations within genes encoding components of the RAM pathway. High rates of isolation of pseudohyphal strains can be explained by the physical size of RAM pathway genes and a hypermutator phenotype of the strain used in phenotypic switching studies. Reversion to wild type yeast morphology in vitro or within a mammalian host can occur through different mechanisms, with one being counter-acting mutations. Infection of mice with RAM mutants reveals several outcomes: clearance of the infection, asymptomatic maintenance of the strains, or reversion to wild type forms and progression of disease. These findings demonstrate a key role of mutation events in microevolution to modulate the ability of a fungal pathogen to cause disease.


Molecular Microbiology | 2008

The RGS protein Crg2 regulates both pheromone and cAMP signalling in Cryptococcus neoformans

Chaoyang Xue; Yen-Ping Hsueh; Lydia Chen; Joseph Heitman

G proteins orchestrate critical cellular functions by transducing extracellular signals into internal signals and controlling cellular responses to environmental cues. G proteins typically function as switches that are activated by G protein‐coupled receptors (GPCRs) and negatively controlled by regulator of G protein signalling (RGS) proteins. In the human fungal pathogen Cryptococcus neoformans, three G protein α subunits (Gpa1, Gpa2 and Gpa3) have been identified. In a previous study, we identified the RGS protein Crg2 involved in regulating the pheromone response pathway through Gpa2 and Gpa3. In this study, a role for Crg2 was established in the Gpa1‐cAMP signalling pathway that governs mating and virulence. We show that Crg2 physically interacts with Gpa1 and crg2 mutations increase cAMP production. crg2 mutations also enhance mating filament hyphae production, but reduce cell–cell fusion and sporulation efficiency during mating. Although crg2 mutations and the Gpa1 dominant active allele GPA1Q284L enhanced melanin production under normally repressive conditions, virulence was attenuated in a murine model. We conclude that Crg2 participates in controlling both Gpa1‐cAMP‐virulence and pheromone‐mating signalling cascades and hypothesize it may serve as a molecular interface between these two central signalling conduits.


The EMBO Journal | 2009

A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans

Yen-Ping Hsueh; Chaoyang Xue; Joseph Heitman

Sex in fungi is driven by peptide pheromones sensed through seven‐transmembrane pheromone receptors. In Cryptococcus neoformans, sexual reproduction occurs through an outcrossing/heterothallic a‐ sexual cycle or an inbreeding/homothallic – unisexual mating process. Pheromone receptors encoded by the mating‐type locus (MAT) mediate reciprocal pheromone sensing during opposite‐sex mating and contribute to but are not essential for unisexual mating. A pheromone receptor‐like gene, CPR2, was discovered that is not encoded by MAT and whose expression is induced during a‐ mating. cpr2 mutants are fertile but have a fusion defect and produce abnormal hyphal structures, whereas CPR2 overexpression elicits unisexual reproduction. When heterologously expressed in Saccharomyces cerevisiae, Cpr2 activates pheromone responses in the absence of any ligand. This constitutive activity results from an unconventional residue, Leu222, in place of a conserved proline in transmembrane domain six; a Cpr2L222P mutant is no longer constitutively active. Cpr2 engages the same G‐protein activated signalling cascade as the Ste3a/α pheromone receptors, and thereby competes for pathway activation. This study established a new paradigm in which a naturally occurring constitutively active G protein‐coupled receptor governs morphogenesis in fungi.


Mbio | 2010

Role of an Expanded Inositol Transporter Repertoire in Cryptococcus neoformans Sexual Reproduction and Virulence

Chaoyang Xue; Tongbao Liu; Lydia Chen; Wenjun Li; Iris Liu; James W. Kronstad; Andreas Seyfang; Joseph Heitman

ABSTRACT Cryptococcus neoformans and Cryptococcus gattii are globally distributed human fungal pathogens and the leading causes of fungal meningitis. Recent studies reveal that myo-inositol is an important factor for fungal sexual reproduction. That C. neoformans can utilize myo-inositol as a sole carbon source and the existence of abundant inositol in the human central nervous system suggest that inositol is important for Cryptococcus development and virulence. In accord with this central importance of inositol, an expanded myo-inositol transporter (ITR) gene family has been identified in Cryptococcus. This gene family contains two phylogenetically distinct groups, with a total of 10 or more members in C. neoformans and at least six members in the sibling species C. gattii. These inositol transporter genes are differentially expressed under inositol-inducing conditions based on quantitative real-time PCR analyses. Expression of ITR genes in a Saccharomyces cerevisiae itr1 itr2 mutant lacking inositol transport can complement the slow-growth phenotype of this strain, confirming that ITR genes are bona fide inositol transporters. Gene mutagenesis studies reveal that the Itr1 and Itr1A transporters are important for myo-inositol stimulation of mating and that functional redundancies among the myo-inositol transporters likely exist. Deletion of the inositol 1-phosphate synthase gene INO1 in an itr1 or itr1a mutant background compromised virulence in a murine inhalation model, indicating the importance of inositol sensing and acquisition for fungal infectivity. Our study provides a platform for further understanding the roles of inositol in fungal physiology and virulence. IMPORTANCE Cryptococcus neoformans is an AIDS-associated human fungal pathogen that causes over 1 million cases of meningitis annually and is the leading cause of fungal meningitis in immunosuppressed patients. The initial cryptococcal infection is caused predominantly via inhalation of sexual spores or desiccated yeast cells from the environment. How this fungus completes its sexual cycle and produces infectious spores in nature and why it frequently infects the central nervous system to cause fatal meningitis are critical questions that remain to be understood. In this study, we demonstrate that inositol acquisition is important not only for fungal sexual reproduction but also for fungal virulence. We identified an expanded inositol transporter gene family that contains over 10 members, important for both fungal sexual reproduction and virulence. Our work contributes to our understanding of how fungi respond to the environmental inositol availability and its impact on sexual reproduction and virulence. Cryptococcus neoformans is an AIDS-associated human fungal pathogen that causes over 1 million cases of meningitis annually and is the leading cause of fungal meningitis in immunosuppressed patients. The initial cryptococcal infection is caused predominantly via inhalation of sexual spores or desiccated yeast cells from the environment. How this fungus completes its sexual cycle and produces infectious spores in nature and why it frequently infects the central nervous system to cause fatal meningitis are critical questions that remain to be understood. In this study, we demonstrate that inositol acquisition is important not only for fungal sexual reproduction but also for fungal virulence. We identified an expanded inositol transporter gene family that contains over 10 members, important for both fungal sexual reproduction and virulence. Our work contributes to our understanding of how fungi respond to the environmental inositol availability and its impact on sexual reproduction and virulence.


Mbio | 2017

Mismatch Repair of DNA Replication Errors Contributes to Microevolution in the Pathogenic Fungus Cryptococcus neoformans

Kylie J. Boyce; Yina Wang; Surbhi Verma; Viplendra P. S. Shakya; Chaoyang Xue; Alexander Idnurm

ABSTRACT The ability to adapt to a changing environment provides a selective advantage to microorganisms. In the case of many pathogens, a large change in their environment occurs when they move from a natural setting to a setting within a human host and then during the course of disease development to various locations within that host. Two clinical isolates of the human fungal pathogen Cryptococcus neoformans were identified from a collection of environmental and clinical strains that exhibited a mutator phenotype, which is a phenotype which provides the ability to change rapidly due to the accumulation of DNA mutations at high frequency. Whole-genome analysis of these strains revealed mutations in MSH2 of the mismatch repair pathway, and complementation confirmed that these mutations are responsible for the mutator phenotype. Comparison of mutation frequencies in deletion strains of eight mismatch repair pathway genes in C. neoformans showed that the loss of three of them, MSH2, MLH1, and PMS1, results in an increase in mutation rates. Increased mutation rates enable rapid microevolution to occur in these strains, generating phenotypic variations in traits associated with the ability to grow in vivo, in addition to allowing rapid generation of resistance to antifungal agents. Mutation of PMS1 reduced virulence, whereas mutation of MSH2 or MLH1 had no effect on the level of virulence. These findings thus support the hypothesis that this pathogenic fungus can take advantage of a mutator phenotype in order to cause disease but that it can do so only in specific pathways that lead to a mutator trait without a significant tradeoff in fitness. IMPORTANCE Fungi account for a large number of infections that are extremely difficult to treat; superficial fungal infections affect approximately 1.7 billion (25%) of the general population worldwide, and systemic fungal diseases result in an unacceptably high mortality rate. How fungi adapt to their hosts is not fully understood. This research investigated the role of changes to DNA sequences in adaption to the host environment and the ability to cause disease in Cryptococcus neoformans, one of the world’s most common and most deadly fungal pathogens. The study results showed that microevolutionary rates are enhanced in either clinical isolates or in gene deletion strains with msh2 mutations. This gene has similar functions in regulating the rapid emergence of antifungal drug resistance in a distant fungal relative of C. neoformans, the pathogen Candida glabrata. Thus, microevolution resulting from enhanced mutation rates may be a common contributor to fungal pathogenesis. IMPORTANCE Fungi account for a large number of infections that are extremely difficult to treat; superficial fungal infections affect approximately 1.7 billion (25%) of the general population worldwide, and systemic fungal diseases result in an unacceptably high mortality rate. How fungi adapt to their hosts is not fully understood. This research investigated the role of changes to DNA sequences in adaption to the host environment and the ability to cause disease in Cryptococcus neoformans, one of the world’s most common and most deadly fungal pathogens. The study results showed that microevolutionary rates are enhanced in either clinical isolates or in gene deletion strains with msh2 mutations. This gene has similar functions in regulating the rapid emergence of antifungal drug resistance in a distant fungal relative of C. neoformans, the pathogen Candida glabrata. Thus, microevolution resulting from enhanced mutation rates may be a common contributor to fungal pathogenesis.


Mbio | 2016

Lipid Flippase Subunit Cdc50 Mediates Drug Resistance and Virulence in Cryptococcus neoformans

Wei Huang; Guojian Liao; Gregory M. Baker; Yina Wang; Richard R. Lau; Padmaja Paderu; David S. Perlin; Chaoyang Xue

ABSTRACT Cryptococcus neoformans is a human fungal pathogen and a major cause of fungal meningitis in immunocompromised individuals. Treatment options for cryptococcosis are limited. Of the two major antifungal drug classes, azoles are active against C. neoformans but exert a fungistatic effect, necessitating long treatment regimens and leaving open an avenue for emergence of azole resistance. Drugs of the echinocandin class, which target the glucan synthase and are fungicidal against a number of other fungal pathogens, such as Candida species, are ineffective against C. neoformans. Despite the sensitivity of the target enzyme to the drug, the reasons for the innate resistance of C. neoformans to echinocandins remain unknown. To understand the mechanism of echinocandin resistance in C. neoformans, we screened gene disruption and gene deletion libraries for mutants sensitive to the echinocandin-class drug caspofungin and identified a mutation of CDC50, which encodes the β-subunit of membrane lipid flippase. We found that the Cdc50 protein localized to membranes and that its absence led to plasma membrane defects and enhanced caspofungin penetration into the cell, potentially explaining the increased caspofungin sensitivity. Loss of CDC50 also led to hypersensitivity to the azole-class drug fluconazole. Interestingly, in addition to functioning in drug resistance, CDC50 was also essential for fungal resistance to macrophage killing and for virulence in a murine model of cryptococcosis. Furthermore, the surface of cdc50Δ cells contained increased levels of phosphatidylserine, which has been proposed to act as a macrophage recognition signal. Together, these results reveal a previously unappreciated role of membrane lipid flippase in C. neoformans drug resistance and virulence. IMPORTANCE Cryptococcus neoformans is a fungal pathogen that is the most common cause of fungal meningitis, causing over 620,000 deaths annually. The treatment options for cryptococcosis are very limited. The most commonly used drugs are either fungistatic (azoles) or highly toxic (amphotericin B). Echinocandins are the newest fungicidal drug class that works well in treating candidiasis and aspergillosis, yet they are ineffective in treating cryptococcosis. In this study, we showed that the regulatory subunit of the lipid translocase (flippase), a protein that regulates the asymmetrical orientation of membrane lipids, is required for C. neoformans resistance to caspofungin, as well as for virulence during infection. This discovery identifies lipid flippase as a potential C. neoformans drug target, which plays an important role in the innate resistance of C. neoformans to echinocandins and in fungal virulence. Cryptococcus neoformans is a fungal pathogen that is the most common cause of fungal meningitis, causing over 620,000 deaths annually. The treatment options for cryptococcosis are very limited. The most commonly used drugs are either fungistatic (azoles) or highly toxic (amphotericin B). Echinocandins are the newest fungicidal drug class that works well in treating candidiasis and aspergillosis, yet they are ineffective in treating cryptococcosis. In this study, we showed that the regulatory subunit of the lipid translocase (flippase), a protein that regulates the asymmetrical orientation of membrane lipids, is required for C. neoformans resistance to caspofungin, as well as for virulence during infection. This discovery identifies lipid flippase as a potential C. neoformans drug target, which plays an important role in the innate resistance of C. neoformans to echinocandins and in fungal virulence.


Microbiology spectrum | 2017

Nutrient Sensing at the Plasma Membrane of Fungal Cells

Patrick Van Dijck; Neil Andrew Brown; Gustavo H. Goldman; Julian C. Rutherford; Chaoyang Xue; Griet Van Zeebroeck

To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.

Collaboration


Dive into the Chaoyang Xue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Seyfang

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

David S. Perlin

Rutgers Biomedical and Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Denise A. Magditch

University of Missouri–Kansas City

View shared research outputs
Researchain Logo
Decentralizing Knowledge