Chaozu He
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chaozu He.
Molecular Microbiology | 2003
Lian-Hui Wang; Ya-Wen He; Yunfeng Gao; Jien Wu; Yi-Hu Dong; Chaozu He; Su Xing Wang; Li-Xing Weng; Jin-Ling Xu; Leng Tay; Rongxiang Fang; Lian-Hui Zhang
Extracellular signals are the key components of microbial cell–cell communication systems. This report identified a diffusible signal factor (DSF), which regulates virulence in Xanthomonas campestris pv. campestris, as cis‐11‐methyl‐2‐dodecenoic acid, an α,β unsaturated fatty acid. Analysis of DSF derivatives established the double bond at the α,β positions as the most important structural feature for DSF biological activity. A range of bacterial pathogens, including several Mycobacterium species, also displayed DSF‐like activity. Furthermore, DSF is structurally and functionally related to farnesoic acid (FA), which regulates morphological transition and virulence by Candida albicans, a fungal pathogen. Similar to FA, which is also an α,β unsaturated fatty acid, DSF inhibits the dimorphic transition of C. albicans at a physiologically relevant concentration. We conclude that α,β unsaturated fatty acids represent a new class of extracellular signals for bacterial and fungal cell–cell communications. As prokaryote–eukaryote interactions are ubiquitous, such cross‐kingdom conservation in cell–cell communication systems might have significant ecological and economic importance.
Theoretical and Applied Genetics | 2004
Y. Sha; Shuai Li; Z. Pei; L. Luo; Yingchuan Tian; Chaozu He
Insertional mutagenesis provides a rapid way to clone a mutated gene. Transfer DNA (T-DNA) of Agrobacterium tumefaciens has been proven to be a successful tool for gene discovery in Arabidopsis and rice (Oryza sativa L. ssp. japonica). Here, we report the generation of 5,200 independent T-DNA tagged rice lines. The T-DNA insertion pattern in the rice genome was investigated, and an initial database was constructed based on T-DNA flanking sequences amplified from randomly selected T-DNA tagged rice lines using Thermal Asymmetric Interlaced PCR (TAIL-PCR). Of 361 T-DNA flanking sequences, 92 showed long T-DNA integration (T-DNA together with non-T-DNA). Another 55 sequences showed complex integration of T-DNA into the rice genome. Besides direct integration, filler sequences and microhomology (one to several nucleotides of homology) were observed between the T-DNA right border and other portions of the vector pCAMBIA1301 in transgenic rice. Preferential insertion of T-DNA into protein-coding regions of the rice genome was detected. Insertion sites mapped onto rice chromosomes were scattered in the genome. Some phenotypic mutants were observed in the T1 generation of the T-DNA tagged plants. Our mutant population will be useful for studying T-DNA integration patterns and for analyzing gene function in rice.
Molecular Plant-microbe Interactions | 2005
Lijuan Wang; Zhongyou Pei; Yingchuan Tian; Chaozu He
The Arabidopsis LSD1 and LOL1 proteins both contain three conserved zinc finger domains and have antagonistic effects on plant programmed cell death (PCD). In this study, a rice (Oryza sativa) functional homolog of LSD1, designated OsLSD1, was identified. The expression of OsLSD1 was light-induced or dark-suppressed. Overexpression of OsLSD1 driven by the cauliflower mosaic virus 35S promoter accelerated callus differentiation in transformed rice tissues and increased chlorophyll b content in transgenic rice plants. Antisense transgenic rice plants exhibited lesion mimic phenotype, increased expression of PR-1 mRNA, and an accelerated hypersensitive response when inoculated with avirulent isolates of blast fungus. Both sense and antisense transgenic rice plants conferred significantly enhanced resistance against a virulent isolate of blast fungus. Moreover, ectopic overexpression of OsLSD1 in transgenic tobacco (Nicotiana tabacum) enhanced the tolerance to fumonisins B1 (FB1), a PCD-eliciting toxin. OsLSD1 green fluorescent protein fusion protein was located in the nucleus of tobacco cells. Our results suggest that OsLSD1 plays a negative role in regulating plant PCD, whereas it plays a positive role in callus differentiation.
Molecular Plant-microbe Interactions | 2008
Wei Qian; Zhong-Ji Han; Chaozu He
The two-component signal transduction systems (TCSTSs), consisting of a histidine kinase sensor (HK) and a response regulator (RR), are the dominant molecular mechanisms by which prokaryotes sense and respond to environmental stimuli. Genomes of Xanthomonas generally contain a large repertoire of TCSTS genes (approximately 92 to 121 for each genome), which encode diverse structural groups of HKs and RRs. Among them, although a core set of 70 TCSTS genes (about two-thirds in total) which accumulates point mutations with a slow rate are shared by these genomes, the other genes, especially hybrid HKs, experienced extensive genetic recombination, including genomic rearrangement, gene duplication, addition or deletion, and fusion or fission. The recombinations potentially promote the efficiency and complexity of TCSTSs in regulating gene expression. In addition, our analysis suggests that a co-evolutionary model, rather than a selfish operon model, is the major mechanism for the maintenance and microevolution of TCSTS genes in the genomes of Xanthomonas. Genomic annotation, secondary protein structure prediction, and comparative genomic analyses of TCSTS genes reviewed here provide insights into our understanding of signal networks in these important phytopathogenic bacteria.
Molecular Plant-microbe Interactions | 2008
Wei Qian; Zhong-Ji Han; Jun Tao; Chaozu He
The gram-negative bacterium Xanthomonas campestris pv. campestris is the causal agent of black rot disease of cruciferous plants. Its genome encodes a large repertoire of two-component signal transduction systems (TCSTSs), which consist of histidine kinases and response regulators (RR) to monitor and respond to environmental stimuli. To investigate the biological functions of these TCSTS genes, we aimed to inactivate all 54 RR genes in X. campestris pv. campestris ATCC 33913, and successfully generated 51 viable mutants using the insertion inactivation method. Plant inoculation identified two novel response regulator genes (XCC1958 and XCC3107) that are involved in virulence of this strain. Genetic complementation demonstrated that XCC3107, designated as vgrR (virulence and growth regulator), also affects bacterial growth and activity of extracellular proteases. In addition, we assessed the survival of these mutants under various stresses, including osmotic stress, high sodium concentration, heat shock, and sodium dodecyl sulfate exposure, and identified a number of genes that may be involved in the general stress response of X. campestris pv. campestris. Mutagenesis and phenotypic characterization of RR genes in this study will facilitate future studies on signaling networks in this important phytopathogenic bacterium.
Molecular Plant-microbe Interactions | 2008
Lifeng Wang; Wei Rong; Chaozu He
Xanthomonas campestris pv. campestris, the causal agent of black rot disease, produces a suite of extracellular cell-wall degrading enzymes (CWDE) that are involved in bacterial virulence. Polygalacturonase (PG) is an important CWDE and functions to degrade the pectic layers of plant cell walls. Although previous studies have documented the virulence functions of PG in Erwinia and Ralstonia species, the regulation of PG genes still needs to be elucidated. In this study, we identified two novel PG genes (pghAxc and pghBxc) encoding functional PG from X. campestris pv. campestris 8004. The expressions of these two PG genes are regulated by the type III secretion regulators HrpX and HrpG and the global regulator Clp. These PG genes could be efficiently induced in planta and were required for the full virulence of X. campestris pv. campestris to Arabidopsis. In addition, these PG were confirmed to be secreted via the type II secretion system in an Xps-dependent manner.
Fems Microbiology Letters | 2003
Qihong Sun; Wei Wu; Wei Qian; Jun Hu; Rongxiang Fang; Chaozu He
A novel transposon mutagenesis system for the phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and X. campestris pv. campestris (Xcc) was developed using a Tn5-based transposome. A highly efficient transformation up to 10(6) transformants per microg transposon DNA was obtained. Southern blot and thermal asymmetric interlaced polymerase chain reaction analyses of Tn5 insertion sites suggested a random mode of transposition. The transposition was stable in the transformants for 20 subcultures. Eighteen thousand and 17000 transformants for Xoo and Xcc, respectively, were generated, corresponding to 4X ORF coverage of the genomes. The libraries will facilitate the identification of pathogenicity-related genes as well as functional genomic analysis in Xoo and Xcc.
Molecular Genetics and Genomics | 2007
Chunxiao Xu; Chaozu He
Arabidopsis LSD1-related proteins that contain LSD1-like zinc finger domains have been identified to be involved in disease resistance and programmed cell death. To investigate the potential role of LSD1-related gene in rice (Oryza sativa L.), we cloned an LSD1 ortholog, OsLOL2, from the rice cDNA plasmid library. The OsLOL2 gene is predicted to encode a polypeptide of 163 amino acids with two LSD1-like zinc finger domains with 74.5% identity to those of LSD1. Southern blot analysis indicated that OsLOL2 was a single-copy gene in the rice genome. Transgenic rice lines carrying the antisense strand of OsLOL2 with decreased expression of OsLOL2 had dwarf phenotypes, and the dwarfism could be restored by exogenous GA3 treatment, suggesting that the dwarfism was the result of a deficiency in bioactive gibberellin (GA). In agreement with this possibility, the content of endogenous bioactive GA1 decreased in the antisense transgenic lines. Expression of OsKS1, one of the genes encoding for GA biosynthetic enzymes, was suppressed in the antisense transgenic lines. Sense transgenic lines with increased expression of OsLOL2 were more resistant to rice bacterial blight, while antisense transgenic lines were less resistant to rice bacterial blight. The OsLOL2-GFP (green fluorescence protein) fusion protein was localized in the nucleus of cells of transgenic BY2 tobacco (Nicotiana tabacum L.). These data suggest that OsLOL2 is involved in rice growth and disease resistance.
Molecular Plant Pathology | 2007
Lifeng Wang; Xiaoyan Tang; Chaozu He
SUMMARY Bacterial pathogens use type III secretion systems (TTSS) to deliver effector proteins into eukaryotic cells for pathogenesis. In bacterial-plant interactions, one effector may function as an avirulence factor to betray the pathogen to the plant surveillance system and induce the hypersensitive response (HR) in the resistant host carrying a corresponding resistance (R) gene. However, the same effector can also sustain the growth of the pathogen by acting as a virulence factor to modulate plant physiology in the susceptible host lacking the corresponding R gene. Here, we identified and characterized a bifunctional TTSS effector AvrXccC belonging to the AvrB effector family in Xanthomonas campestris pv. campestris 8004. This effector is required for full bacterial virulence in the susceptible host cabbage (Brassica oleracea) and avirulence in the resistant host mustard (Brassica napiformis L.H. Baily). Expressing avrXccC in mustard-virulent strain Xcc HRI 3849A converts its virulence to avirulence. The effector AvrXccC is anchored to the plant plasma membrane, and the N-terminal myristoylation site (amino acids 2-7: GLcaSK) is essential for its localization. In addition, the avirulence function of AvrXccC for host recognition depends on its plasma membrane localization. Promoter activity assays showed that the expression of avrXccC is hrpG/hrpX-dependent. Moreover, the secretion of AvrXccC displayed hrp-dependency and the core sequence for AvrXccC translocation was defined to the N-terminal 40 amino acids.
Molecular Genetics and Genomics | 2004
Guiyou Liu; Lifeng Wang; Zhuangzhi Zhou; Hei Leung; Guo-Liang Wang; Chaozu He
The rice lesion mimic mutant spotted leaf 1 ( spl1) was first identified in the rice ( Oryza sativa) cultivar Asahi in 1965. This mutant displayed spontaneous disease-like lesions in the absence of any pathogen, and was found to confer resistance to multiple isolates of rice blast. We employed a map-based cloning strategy to localize the Spl1 gene. A total of ten cleaved amplified polymorphic sequence (CAPS) markers linked to the Spl1 gene were identified and mapped to an 8.5-cM region on chromosome 12. A high-resolution genetic map was developed using these ten CAPS markers and a segregating population consisting of 3202 individuals. A BAC contig containing four BAC clones was constructed, and Spl1 was localized to a 423-kb region. Seven spl1 mutants were obtained from the IR64 deletion mutant collection, and molecular analysis using these mutants delimited the Spl1 gene to a 70-kb interval, covered by two BAC clones. These results provide the basis for cloning this gene, which is involved in cell death and disease resistance in rice.