Chaquip D. Netto
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chaquip D. Netto.
Bioorganic & Medicinal Chemistry | 2010
Chaquip D. Netto; Alcides J.M. da Silva; Eduardo J. Salustiano; Thiago S. Bacelar; Ingred Riça; Moisés C.M. Cavalcante; Vivian M. Rumjanek; Paulo R. R. Costa
A new pterocarpanquinone (5a) was synthesized through a palladium catalyzed oxyarylation reaction and was transformed, through electrophilic substitution reaction, into derivatives 5b-d. These compounds showed to be active against human leukemic cell lines and human lung cancer cell lines. Even multidrug resistant cells were sensitive to 5a, which presented low toxicity toward peripheral blood mononuclear cells (PBMC) cells and decreased the production of TNF-alpha by these cells. In the laboratory these pterocarpanquinones were reduced by sodium dithionite in the presence of thiophenol at physiological pH, as NAD(P)H quinone oxidoredutase-1 (NQO1) catalyzed two-electron reduction, and the resulting hydroquinone undergo structural rearrangements, leading to the formation of Michael acceptors, which were intercepted as adducts of thiophenol. These results suggest that these compounds could be activated by bioreduction.
Journal of the Brazilian Chemical Society | 2009
A. J. M. da Silva; Chaquip D. Netto; Wallace Pacienza-Lima; E. C. Torres-Santos; Bartira Rossi-Bergmann; Séverine Maurel; Alexis Valentin; Paulo R. R. Costa
Pterocarpanquinones 8a-c, previously synthesized in our laboratory, and an homologous series of derivatives, compounds 9a-c prepared in this work, were evaluated on breast cancer cells (MCF-7) and on the parasites Leishmania amazonensis and Plasmodium falciparum, in culture. Compounds 8a-c were more potent than 9a-c on tumor cells and Leishmania amazonensis. On the other hand, 9a-c showed to be more active on Plasmodium falciparum. All the compounds studied were bioselective, presenting negligible cytotoxicity against fresh murine lymphocytes and human lymphocytes activated by the mitogen phytohemaglutinin (PHA).
Investigational New Drugs | 2011
Raquel Ciuvalschi Maia; Flavia da Cunha Vasconcelos; Thiago S. Bacelar; Eduardo J. Salustiano; Luís Silva; Debora L. Pereira; Arthur Moellman-Coelho; Chaquip D. Netto; Alcides J.M. da Silva; Vivian M. Rumjanek; Paulo R. R. Costa
SummaryDespite the relevant therapeutic progresses obtained with imatinib, clinical resistance to this drug has emerged and reemerged after cytogenetic remission in a group of patients with chronic myeloid leukemia (CML). Therefore, novel treatment strategies are needed. In this study, we evaluated the anti-CML activity and mechanisms of action of LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]. LQB-118 treatment resulted in an important reduction of cell viability in cell lines derived from CML, both the vincristine-sensitive K562 cell line, and the resistant K562-Lucena (a cell line overexpressing P-glycoprotein). In agreement with these results, the induction of caspase-3 activation by this compound indicated that a significant rate of apoptosis was taking place. In these cell lines, apoptosis induced by LQB-118 was accompanied by a reduction of P-glycoprotein, survivin, and XIAP expression. Moreover, this effect was not restricted to cell lines as LQB-118 produced significant apoptosis rate in cells from CML patients exhibiting multifactorial drug resistance phenotype such as P-glycoprotein, MRP1 and p53 overexpression. The data suggest that LQB-118 has a potent anti-CML activity that can overcome multifactorial drug resistance mechanisms, making this compound a promising new anti-CML agent.
European Journal of Medicinal Chemistry | 2009
Chaquip D. Netto; Eduardo Salustiano Jesus Dos Santos; Carolina Pereira Castro; Alcides J.M. da Silva; Vivian M. Rumjanek; Paulo R. R. Costa
Naturally occurring pterocarpans 1a,b, pterocarpan 1c, isoflavane 2 and ortho-quinone 3 were synthesized in the racemic form and their cytotoxic effect was evaluated on the human leukemia cell lines K562 (resistant to oxidative stress), Lucena-1 (MDR phenotype) and HL-60. Ortho-quinone 3 (IC(50)=1.5 microM, 1.8 microM and 0.2 microM, respectively) and catechol pterocarpan 1a (IC(50)=3.0 microM, 3.7 microM and 2.1 microM, respectively) were the most active compounds on these cells and were also evaluated on other human leukemia cell lines (Jurkat and Daudi). Ortho-quinone 3 was 2 to 10 times more potent than pterocarpan 1a, depending on the cell line considered, however, showed a greater toxicity for lymphocytes activated by PHA.
Journal of Antimicrobial Chemotherapy | 2011
Edézio Ferreira Cunha-Júnior; Wallace Pacienza-Lima; Grazielle Alves Ribeiro; Chaquip D. Netto; Marilene M. Canto-Cavalheiro; Alcides J.M. da Silva; Paulo R. R. Costa; Bartira Rossi-Bergmann; Eduardo Caio Torres-Santos
OBJECTIVES This paper describes the antileishmanial properties of LQB-118, a new compound designed by molecular hybridization, orally active in Leishmania amazonensis-infected BALB/c mice. METHODS In vitro antileishmanial activity was determined in L. amazonensis-infected macrophages. For in vivo studies, LQB-118 was administered intralesionally (15 μg/kg/day, five times a week), intraperitoneally (4.5 mg/kg/day, five times a week) or orally (4.5 mg/kg/day, five times a week) to L. amazonensis-infected BALB/c mice throughout experiments lasting 85 or 105 days. At the end of the experiments, serum levels of alanine aminotransferase, aspartate aminotransferase and creatinine were measured as toxicological parameters. RESULTS LQB-118 was active against intracellular amastigotes of L. amazonensis [50% inhibitory concentration (IC(50)) 1.4 μM] and significantly less so against macrophages (IC(50) 18.5 μM). LQB-118 administered intralesionally, intraperitoneally or orally was found to control both lesion and parasite growth in L. amazonensis-infected BALB/c mice, without altering serological markers of toxicity. CONCLUSIONS These results demonstrate that the molecular hybridization of a naphthoquinone core to pterocarpan yielded a novel antileishmanial compound that was locally and orally active in an experimental cutaneous leishmaniasis model.
Bioorganic & Medicinal Chemistry | 2011
Camilla D. Buarque; Gardenia C.G. Militão; Daisy Jereissati Barbosa Lima; Letícia V. Costa-Lotufo; Cláudia Pessoa; Manoel Odorico de Moraes; Edézio Ferreira Cunha-Júnior; Eduardo Caio Torres-Santos; Chaquip D. Netto; Paulo R. R. Costa
Pterocarpanquinones (1a-e) and the aza-pterocarpanquinone (2) were synthesized through palladium catalyzed oxyarylation and azaarylation of conjugate olefins, and showed antineoplasic effect on leukemic cell lines (K562 and HL-60) as well as colon cancer (HCT-8), gliobastoma (SF-295) and melanoma (MDA-MB435) cell lines. Some derivatives were prepared (3-8) and evaluated, allowing establishing the structural requirements for the antineoplasic activity in each series. Compound 1a showed the best selectivity index in special for leukemic cells while 2 showed to be more bioselective for HCT-8, SF-295 and MDA-MB435 cells. Pterocarpanquinones 1a and 1c-e, as well as 8 were the most active on amastigote form of Leishmania amazonensis in culture. Compounds 1a, 1c and 8 showed the best selectivity index.
Veterinary Parasitology | 2012
J.A. Portes; Chaquip D. Netto; Alcides J.M. da Silva; Paulo R. R. Costa; Renato Augusto DaMatta; Thiago Alves dos Santos; Wanderley de Souza; Sergio Henrique Seabra
Toxoplasma gondii, the agent of Toxoplasmosis, is an obligate intracellular protozoan able to infect a wide range of vertebrate cells, including nonprofessional and professional phagocytes. Therefore, drugs must have intracellular activities in order to control this parasite. The most common therapy for Toxoplasmosis is the combination of sulfadiazine and pyrimethamine. This treatment is associated with adverse reactions, thus, the development of new drugs is necessary. In previous studies, naphthoquinone derivatives showed anti-cancer activity functioning as agents capable of acting on groups of DNA, preventing cancer cells duplication. These derivatives also display anti-parasitic activity against Plasmodium falciparum and Leishmania amazonensis. The derivative pterocarpanquinone tested in this work resulted from the molecular hybridization between pterocarpans and naphtoquinone that presents anti-tumoral and anti-parasitic activities of lapachol. The aim of this work was to determine if this derivative is able to change T. gondii growth within LLC-MK2 cells. The drug did not arrest host cell growth, but was able to decrease the infection index of T. gondii with an IC(50) of 2.5 μM. Scanning and transmission electron microscopy analysis showed morphological changes of parasites including membrane damage. The parasite that survived tended to encyst as seen by Dolichos biflorus lectin staining and Bag-1 expression. These results suggest that pterocarpanquinones are drugs potentially important for the killing and encystment of T. gondii.
Journal of the Brazilian Chemical Society | 2004
Alcides J.M. da Silva; Chaquip D. Netto; Paulo R. R. Costa
We report the first synthesis of (±)-3,4-dihydroxy-8,9-methylenedioxypterocarpan, a natural isoflavonoid that shows antitumoral activity. The key step involved the Heck reaction between the 7,8-dibenzyloxychromen and the organomercurial derived from sesamol, followed by debenzylation. The Heck adduct was also employed in the synthesis of the corresponding coumestan derivative, using DDQ as oxidant agent.
Bioorganic & Medicinal Chemistry | 2014
Thiago Martino; Fernanda Cândido Magalhães; Graça Justo; Marsen Garcia Pinto Coelho; Chaquip D. Netto; Paulo R. R. Costa; Kátia Costa de Carvalho Sabino
The incidence of cancer grows annually worldwide and in Brazil it is the second cause of death. The search for anti-cancer drugs has then become urgent. It depends on the studies of natural and chemical synthesis products. The antitumor action of LQB-118, a pterocarpanquinone structurally related to lapachol, has been demonstrated to induce mechanisms linked to leukemia cell apoptosis. This work investigated some mechanisms of the in vitro antitumor action of LQB-118 on prostate cancer cells. LQB-118 reduced the expression of the c-Myc transcription factor, downregulated the cyclin D1 and cyclin B1 mRNA levels and upregulated the p21 cell cycle inhibitor. These effects resulted in cell cycle arrest in the S and G2/M phases and inhibition of tumor cell proliferation. LQB-118 also induced programmed cell death of the prostate cancer cells, as evidenced by internucleosomal DNA fragmentation and annexin-V positive cells. Except the cell cycle arrest in the S phase and enhanced c-Myc expression, all the mechanisms observed here for the in vitro antitumor action of LQB-118 were also found for Paclitaxel, a traditional antineoplastic drug. These findings suggest new molecular mechanisms for the LQB-118 in vitro antitumor action.
Parasitology International | 2015
Luciana Lemos Rangel da Silva; J.A. Portes; Marlon Heggdorne de Araújo; Jéssica Lays Sant'ana Silva; Magdalena N. Rennó; Chaquip D. Netto; Alcides J.M. da Silva; Paulo R. R. Costa; Wanderley de Souza; Sergio Henrique Seabra; Renato Augusto DaMatta
Toxoplasmosis is a widely disseminated disease caused by Toxoplasma gondii, an intracellular protozoan parasite. Standard treatment causes many side effects, such as depletion of bone marrow cells, skin rashes and gastrointestinal implications. Therefore, it is necessary to find chemotherapeutic alternatives for the treatment of this disease. It was shown that a naphthoquinone derivative compound is active against T. gondii, RH strain, with an IC50 around 2.5 μM. Here, three different naphthoquinone derivative compounds with activity against leukemia cells and breast carcinoma cell were tested against T. gondii (RH strain) infected LLC-MK2 cell line. All the compounds were able to inhibit parasite growth in vitro, but one of them showed an IC50 activity below 1 μM after 48 h of treatment. The compounds showed low toxicity to the host cell. In addition, these compounds were able to induce tachyzoite-bradyzoite conversion confirmed by morphological changes, Dolichus biflorus lectin cyst wall labeling and characterization of amylopectin granules in the parasites by electron microscopy analysis using the Thierry technique. Furthermore, the compounds induced alterations on the ultrastructure of the parasite. Taken together, our results point to the naphthoquinone derivative (LQB 151) as a potential compound for the development of new drugs for the treatment of toxoplasmosis.