Charalambos Kaittanis
University of Central Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charalambos Kaittanis.
Angewandte Chemie | 2009
J. Manuel Perez; Atul Asati; Santimukul Santra; Charalambos Kaittanis; Sudip Nath
Inorganic enzyme? Ceria nanoparticles exhibit unique oxidase-like activity at acidic pH values. These redox catalysts can be used in immunoassays (ELISA) when modified with targeting ligands (see picture; light blue and yellow structures are nanoparticles with attached ligands). This modification allows both for binding and for detection by the catalytic oxidation of sensitive colorimetric dyes (e.g. TMB).
Small | 2009
Santimukul Santra; Charalambos Kaittanis; Jan Grimm; J. Manuel Perez
A biocompatible, multimodal, and theranostic functional iron oxide nanoparticle is synthesized using a novel water-based method and exerts excellent properties for targeted cancer therapy, and optical and magnetic resonance imaging. For the first time, a facile, modified solvent diffusion method is used for the co-encapsulation of both an anticancer drug and near-infrared dyes. The resulting folate-derivatized theranostics nanoparticles could allow for targeted optical/magnetic resonance imaging and targeted killing of folate-expressing cancer cells.
Small | 2008
J. Manuel Perez; Atul Asati; Sudip Nath; Charalambos Kaittanis
Recent reports indicate that cerium oxide nanoparticles (nanoceria) are potent free-radical scavengers with neuroprotective, radioprotective, and anti-inflammatory properties. Nanoceria also have the unique property of being regenerative or autocatalytic. These results point to the possibility of engineering nanoceria with selective antioxidant properties that promote cell survival under conditions of oxidative stress. However, most of these studies have been done with nanoparticles with poor water solubility or synthesized by procedures involving toxic solvents, therefore hindering their potential clinical use. Herein, we report a facile synthesis of monodisperse, water-soluble, and highly crystalline dextran-coated nanoceria (DNC). The improved water solubility of DNC allowed for studies that show a unique pHdependent antioxidant activity that could have important applications in the design of improved therapeutics and in tailoring its antioxidant properties. Our synthetic procedure involves the alkaline-based precipitation of cerium oxide (Ce2O3:CeO2) from a solution containing cerium salt and dextran. Briefly, an aqueous solution of cerium nitrate and dextran was added to an ammonia solution under continuous stirring. Upon formation of the cerium oxide nanocrystals, molecules of dextran coat the nanoparticles’ surface, preventing further growth and resulting in dextran-coated nanoceria (DNC). The DNC preparation is stable in phosphate-buffered saline (PBS) at concentrations of 40mM or higher for months. DNC demonstrates good water stability even after several heating cycles (70–80 8C) with no sedimentation upon centrifugation at 8000 rpm for 30min. These characteristics make our waterbased synthetic method advantageous over organic-solventbased preparations, which are prone to aggregation when suspended in aqueous media.
BMC Evolutionary Biology | 2006
Robert K. Jansen; Charalambos Kaittanis; Christopher A. Saski; Seung Bum Lee; Jeffrey Tomkins; Andrew J. Alverson; Henry Daniell
BackgroundThe Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids.ResultsThe Vitis vinifera chloroplast genome is 160,928 bp in length, including a pair of inverted repeats of 26,358 bp that are separated by small and large single copy regions of 19,065 bp and 89,147 bp, respectively. The gene content and order of Vitis is identical to many other unrearranged angiosperm chloroplast genomes, including tobacco. Phylogenetic analyses using maximum parsimony and maximum likelihood were performed on DNA sequences of 61 protein-coding genes for two datasets with 28 or 29 taxa, including eight or nine taxa from four of the seven currently recognized major clades of rosids. Parsimony and likelihood phylogenies of both data sets provide strong support for the placement of Vitaceae as sister to the remaining rosids. However, the position of the Myrtales and support for the monophyly of the eurosid I clade differs between the two data sets and the two methods of analysis. In parsimony analyses, the inclusion of Gossypium is necessary to obtain trees that support the monophyly of the eurosid I clade. However, maximum likelihood analyses place Cucumis as sister to the Myrtales and therefore do not support the monophyly of the eurosid I clade.ConclusionPhylogenies based on DNA sequences from complete chloroplast genome sequences provide strong support for the position of the Vitaceae as the earliest diverging lineage of rosids. Our phylogenetic analyses support recent assertions that inadequate taxon sampling and incorrect model specification for concatenated multi-gene data sets can mislead phylogenetic inferences when using whole chloroplast genomes for phylogeny reconstruction.
BMC Genomics | 2006
Seung-Bum Lee; Charalambos Kaittanis; Robert K. Jansen; Jessica B. Hostetler; Luke J. Tallon; Christopher D. Town; Henry Daniell
BackgroundCotton (Gossypium hirsutum) is the most important fiber crop grown in 90 countries. In 2004–2005, US farmers planted 79% of the 5.7-million hectares of nuclear transgenic cotton. Unfortunately, genetically modified cotton has the potential to hybridize with other cultivated and wild relatives, resulting in geographical restrictions to cultivation. However, chloroplast genetic engineering offers the possibility of containment because of maternal inheritance of transgenes. The complete chloroplast genome of cotton provides essential information required for genetic engineering. In addition, the sequence data were used to assess phylogenetic relationships among the major clades of rosids using cotton and 25 other completely sequenced angiosperm chloroplast genomes.ResultsThe complete cotton chloroplast genome is 160,301 bp in length, with 112 unique genes and 19 duplicated genes within the IR, containing a total of 131 genes. There are four ribosomal RNAs, 30 distinct tRNA genes and 17 intron-containing genes. The gene order in cotton is identical to that of tobacco but lacks rpl22 and infA. There are 30 direct and 24 inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Most of the direct repeats are within intergenic spacer regions, introns and a 72 bp-long direct repeat is within the psaA and psaB genes. Comparison of protein coding sequences with expressed sequence tags (ESTs) revealed nucleotide substitutions resulting in amino acid changes in ndhC, rpl23, rpl20, rps3 and clpP. Phylogenetic analysis of a data set including 61 protein-coding genes using both maximum likelihood and maximum parsimony were performed for 28 taxa, including cotton and five other angiosperm chloroplast genomes that were not included in any previous phylogenies.ConclusionCotton chloroplast genome lacks rpl22 and infA and contains a number of dispersed direct and inverted repeats. RNA editing resulted in amino acid changes with significant impact on their hydropathy. Phylogenetic analysis provides strong support for the position of cotton in the Malvales in the eurosids II clade sister to Arabidopsis in the Brassicales. Furthermore, there is strong support for the placement of the Myrtales sister to the eurosid I clade, although expanded taxon sampling is needed to further test this relationship.
Journal of the American Chemical Society | 2009
Charalambos Kaittanis; Santimukul Santra; J. Manuel Perez
Nanoparticle-based diagnostics typically involve the conjugation of targeting ligands to the nanoparticle to create a sensitive and specific nanosensor that can bind and detect the presence of a target, such as a bacterium, cancer cell, protein, or DNA sequence. Studies that address the effect of multivalency on the binding and detection pattern of these nanosensors, particularly on magnetic relaxation nanosensors that sense the presence of a target in a dose-dependent manner by changes in the water relaxation times (DeltaT2), are scarce. Herein, we study the effect of multivalency on the detection profile of cancer cells and bacteria in complex media, such as blood and milk. In these studies, we conjugated folic acid at two different densities (low-folate and high-folate) on polyacrylic-acid-coated iron oxide nanoparticles and studied the interaction of these magnetic nanosensors with cancer cells expressing the folate receptor. Results showed that the multivalent high-folate magnetic relaxation nanosensor performed better than its low folate counterpart, achieving single cancer cell detection in blood samples within 15 min. Similar results were also observed when a high molecular weight anti-folate antibody (MW 150 kDa) was used instead of the low molecular weight folic acid ligand (MW 441.4 kDa), although better results in terms of sensitivity, dynamic range, and speed of detection were obtained when the folate ligand was used. Studies using bacteria in milk suspensions corroborated the results observed with cancer cells. Taken together, these studies demonstrate that nanoparticle multivalency plays a key role in the interaction of the nanoparticle with the cellular target and modulate the behavior and sensitivity of the assay. Furthermore, as detection with magnetic relaxation nanosensors is a nondestructive technique, magnetic isolation and further characterization of the cancer cells is possible.
Analytical Chemistry | 2008
Sudip Nath; Charalambos Kaittanis; and Alisa Tinkham; J. Manuel Perez
Bacteria rapidly evolve mechanisms to become resistant to antibiotics. Therefore, identifying an effective antibiotic or antibacterial agent and administering it at concentrations that will successfully prevent bacterial growth (antimicrobial susceptibility) is critical for health care decision making and vital for the battle against multi-drug-resistant bacteria. Currently, the determination of antimicrobial susceptibility requires at least 24 h. Herein, we describe a nanoparticle-based antimicrobial susceptibility assay based on the concanavalin A-induced clustering of dextran-coated gold nanoparticles, which sense the presence of available complex carbohydrates in bacterial suspension. Under conditions of bacterial growth inhibition, addition of concanavalin A results in the formation of extensive dextran gold nanoassemblies, which are facilitated by the presence of free carbohydrates in solution and result in large shifts in the surface plasmon band of the nanoparticles. Meanwhile, at conditions of increased bacterial growth, a decrease in the amount of free carbohydrates in solution will occur due to an increased carbohydrate uptake by the proliferating bacteria. This will result in a decrease in the size of the gold nanoparticle clusters and an increase in the number of nanoparticles that bind to bacterial surface carbohydrates, causing lower shifts in the plasmonic band. The gold nanoparticle-based assessment of antimicrobial susceptibility yields results within 3 h and can be used for the high-throughput screening of samples during epidemics and identification of potential antimicrobial agents to expedite clinical decision-making in point-of-care diagnostics.
Molecular Pharmaceutics | 2010
Santimukul Santra; Charalambos Kaittanis; J. Manuel Perez
The effective administration of therapeutic proteins has received increased attention for the treatment of various diseases. Encapsulation of these proteins in various matrices, as a method of protein structure and function preservation, is a widely used approach that results in maintenance of the proteins function. However, targeted delivery and tracking of encapsulated therapeutic proteins to the affected cells is still a challenge. In an effort to advance the targeted delivery of a functional apoptosis-initiating protein (cytochrome c) to cancer cells, we formulated theranostic polymeric nanoparticles for the simultaneous encapsulation of cytochrome c and a near-infrared dye to folate-expressing cancer cells. The polymeric nanoparticles were prepared using a novel water-soluble hyperbranched polyhydroxyl polymer that allows for dual encapsulation of a hydrophilic protein and an amphiphilic fluorescent dye. Our protein therapeutic cargo is the endogenous protein cytochrome c, which upon cytoplasmic release, initiates an apoptotic response leading to programmed cell death. Results indicate that encapsulation of cytochrome c within the nanoparticles cavities preserved the proteins enzymatic activity. The potential therapeutic property of these nanoparticles was demonstrated by the induction of apoptosis upon intracellular delivery. Furthermore, targeted delivery of cytochrome c to folate-receptor-positive cancer cells was achieved via conjugation of folic acid to the nanoparticles surface, whereas the nanoparticles theranostic properties were conferred via the coencapsulation of cytochrome c and a fluorescent dye. Considering that these theranostic nanoparticles can carry an endogenous cellular apoptotic initiator (cytochrome c) and a fluorescent tag (ICG) commonly used in the clinic, their use and potential translation into the clinic is anticipated, facilitating the monitoring of tumor regression.
ACS Nano | 2012
Santimukul Santra; Samuel D. Jativa; Charalambos Kaittanis; Guillaume Normand; Jan Grimm; J. Manuel Perez
Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the poly(acrylic acid) (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA), yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T(1)). Upon release of the Gd-DTPA complex from the nanoprobes polymeric coating in acidic media, an increase in the T(1) relaxation rate (1/T(1)) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T(1)-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T(1) signal was observed. This result suggests that, upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cells lysosome acidic (pH 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T(1) activation. In addition, when an anticancer drug (Taxol) was coencapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T(1) activation of the probe coincided with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T(1) nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI.
Langmuir | 2010
Santimukul Santra; Charalambos Kaittanis; J. Manuel Perez
Herein we report the design and synthesis of multifunctional hyperbranched polyester-based nanoparticles and nanocomposites with properties ranging from magnetic, fluorescence, antioxidant and X-ray contrast. The fabrication of these nanostructures was achieved using a novel aliphatic and biodegradable hyperbranched polyester (HBPE) synthesized from readily available diethyl malonate. The polymers globular structure with functional surface carboxylic groups and hydrophobic cavities residing in the polymers interior allows for the formation of multifunctional polymeric nanoparticles, which are able to encapsulate a diversity of hydrophobic cargos. Via simple surface chemistry modifications, the surface carboxylic acid groups were modified to yield nanoparticles with a variety of surface functionalizations, such as amino, azide and propargyl groups, which mediated the conjugation of small molecules. This capability achieved the engineering of the HBPE nanoparticle surface for specific cell internalization studies and the formation of nanoparticle assemblies for the creation of novel nanocomposites that retained, and in some cases enhanced, the properties of the parental nanoparticle building blocks. Considering these results, the HBPE polymer, nanoparticles and composites should be ideal for biomedical, pharmaceutical, nanophotonics applications.