Charilaos Yiotis
University College Dublin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charilaos Yiotis.
New Phytologist | 2016
Jennifer C. McElwain; Charilaos Yiotis; Tracy Lawson
Summary Understanding the drivers of geological‐scale patterns in plant macroevolution is limited by a hesitancy to use measurable traits of fossils to infer palaeoecophysiological function. Here, scaling relationships between morphological traits including maximum theoretical stomatal conductance (g max) and leaf vein density (D v) and physiological measurements including operational stomatal conductance (g op), saturated (A sat ) and maximum (A max) assimilation rates were investigated for 18 extant taxa in order to improve understanding of angiosperm diversification in the Cretaceous. Our study demonstrated significant relationships between g op, g max and D v that together can be used to estimate gas exchange and the photosynthetic capacities of fossils. We showed that acquisition of high g max in angiosperms conferred a competitive advantage over gymnosperms by increasing the dynamic range (plasticity) of their gas exchange and expanding their ecophysiological niche space. We suggest that species with a high g max (> 1400 mmol m−2 s−1) would have been capable of maintaining a high A max as the atmospheric CO 2 declined through the Cretaceous, whereas gymnosperms with a low g max would experience severe photosynthetic penalty. Expansion of the ecophysiological niche space in angiosperms, afforded by coordinated evolution of high g max , D v and increased plasticity in g op , adds further functional insights into the mechanisms driving angiosperm speciation.
Planta | 2010
Charilaos Yiotis; Yiannis Manetas
A combination of gas exchange and various chlorophyll fluorescence measurements under varying O2 and CO2 partial pressures were used to characterize photosynthesis in green, stomata-bearing petioles of Zantedeschia aethiopica (calla lily) while corresponding leaves served as controls. Compared to leaves, petioles displayed considerably lower CO2 assimilation rates, limited by both stomatal and mesophyll components. Further analysis of mesophyll limitations indicated lower carboxylating efficiencies and insufficient RuBP regeneration but almost similar rates of linear electron transport. Accordingly, higher oxygenation/carboxylation ratios were assumed for petioles and confirmed by experiments under non-photorespiratory conditions. Higher photorespiration rates in petioles were accompanied by higher cyclic electron flow around PSI, the latter being possibly linked to limitations in electron transport from intermediate electron carriers to end acceptors and low contents of PSI. Based on chlorophyll fluorescence methods, similar conclusions can be drawn for green pedicels, although gas exchange in these organs could not be applied due to their bulky size. Since our test plants were not subjected to stress we argue that higher photorespiration and cyclic electron flow rates are innate attributes of photosynthesis in stalks of calla lily. Active nitrogen metabolism may be inferred, while increased cyclic electron flow may provide the additional ATP required for the enhanced photorespiratory activity in petiole and pedicel chloroplasts and/or the decarboxylation of malate ascending from roots.
Photosynthetica | 2008
Charilaos Yiotis; George K. Psaras; Yiannis Manetas
Some photosynthetic attributes of leaves and stems were seasonally followed in the small-leaved, summer-deciduous, green-stemmed Mediterranean shrub Calicotome villosa. Both leaves and stems displayed similar photon energy-saturated photosystem 2 (PS2) efficiencies with a minimum during winter. A second minimum in stems during the leafless summer period could be ascribed to sustained photoinhibition. Yet, stems were slightly inferior in photon capture, resulting partly from lower chlorophyll (Chl) contents and partly from higher reflectance due to pubescence. As a result, photon energy-saturated linear electron transport rates were slightly higher in leaves. However, when the total leaf and stem areas were taken into account, this superiority was abolished during autumn and winter and more than overturned during spring. Given that during summer the stems were the only photosynthetic organs, the yearly photosynthetic contribution of stems was much higher. Chl contents in stems displayed a transient and considerable summer drop, accompanied by an increase in the carotenoid to Chl ratio, indicating a photo-protective adaptation to summer drought through a decrease of photo-selective capacity, typical for leaves of many Mediterranean plants.
Plant Methods | 2015
Amanda S. Porter; Christiana Evans-Fitz.Gerald; Jennifer C. McElwain; Charilaos Yiotis; Caroline Elliott-Kingston
BackgroundPlant growth chambers provide a controlled environment to analyse the effects of environmental parameters (light, temperature, atmospheric gas composition etc.) on plant function. However, it has been shown that a ‘chamber effect’ may exist whereby results observed are not due to an experimental treatment but to inconspicuous differences in supposedly identical chambers. In this study, Vicia faba L. ‘Aquadulce Claudia’ (broad bean) plants were grown in eight walk-in chambers to establish if a chamber effect existed, and if so, what plant traits are best for detecting such an effect. A range of techniques were used to measure differences between chamber plants, including chlorophyll fluorescence measurements, gas exchange analysis, biomass, reproductive yield, anatomical traits and leaf stable carbon isotopes.Results and discussionFour of the eight chambers exhibited a chamber effect. In particular, we identified two types of chamber effect which we term ‘resolvable’ or ‘unresolved’; a resolvable chamber effect is caused by malfunctioning components of a chamber and an unresolved chamber effect is caused by unknown factors that can only be mitigated by appropriate experimental design and sufficient replication. Not all measured plant traits were able to detect a chamber effect and no single trait was capable of detecting all chamber effects. Fresh weight and flower count detected a chamber effect in three chambers, stable carbon isotopes (δ13C) and net rate CO2 assimilation (An) identified a chamber effect in two chambers, stomatal conductance (gs) and total performance index detected an effect only in one chamber.Conclusion(1) Chamber effects can be adequately detected by fresh weight measurements and flower counts on Vicia faba plants. These methods were the most effective in terms of detection and most efficient in terms of time. (2) δ13C, gs and An measurements help distinguish between resolvable and unresolved chamber effects. (3) Unresolved chamber effects require experimental unit replication while resolvable chamber effects require investigation, repair and retesting in advance of initiating further experiments.
Photosynthetica | 2009
Charilaos Yiotis; Y. Petropoulou; Yiannis Manetas
Recent reports have indicated a considerably inactivated PSII in twig cortices, in spite of the low light transmittance of overlying periderms. Corresponding information for more deeply located and less illuminated tissues like xylem rays and pith are lacking. In this investigation we aimed to characterize the efficiency of PSII and its light sensitivity along twig depth, in conjunction with the prevailing light quantity and quality. To that aim, optical methods (spectral reflectance and transmittance, chlorophyll fluorescence imaging, low temperature fluorescence spectra) and photoinhibitory treatments were applied in cut twig sections of four tree species, while corresponding leaves served as controls. Compared to leaves, twig tissues displayed lower chlorophyll (Chl) levels and dark-adapted PSII efficiency, with strong decreasing gradients towards the twig center. The low PSII efficiencies in the inner stem were not an artifact due to an actinic effect of measuring beam or to an enhanced contribution of PSI fluorescence. In fact, the PSII/PSI ratios in cortices were higher and those in the xylem rays similar to that of leaves. Inner twig tissues were quite resistant to photoinhibitory treatments, tolerating irradiation levels several-fold higher than those encountered in their microenvironment. Moreover, the extent of high light tolerance was similar in naturally exposed and shaded twig sides. The results indicate an increasing, inherent and light-independent inactivation of PSII along twig depth. The findings are discussed on the basis of a recently proposed model for photosynthetic electron flow in twigs, taking into account the specific atmospheric and light microenvironment as well as the possible metabolic needs of such bulky organs.
Annals of Botany | 2018
C. Purcell; Sven P. Batke; Charilaos Yiotis; Rodrigo Caballero; W. K. Soh; Michelle Murray; Jennifer C. McElwain
Background and Aims Studies have indicated that plant stomatal conductance (gs) decreases in response to elevated atmospheric CO2, a phenomenon of significance for the global hydrological cycle. However, gs increases across certain CO2 ranges have been predicted by optimization models. The aim of this work was to demonstrate that under certain environmental conditions, gs can increase in response to elevated CO2. Methods Using (1) an extensive, up-to-date synthesis of gs responses in free air CO2 enrichment (FACE)experiments, (2) in situ measurements across four biomes showing dynamic gs responses to a CO2 rise of ~50 ppm (characterizing the change in this greenhouse gas over the past three decades) and (3) a photosynthesis-stomatal conductance model, it is demonstrated that gs can in some cases increase in response to increasing atmospheric CO2. Key Results Field observations are corroborated by an extensive synthesis of gs responses in FACE experiments showing that 11.8 % of gs responses under experimentally elevated CO2 are positive. They are further supported by a strong data-model fit (r2 = 0.607) using a stomatal optimization model applied to the field gs dataset. A parameter space identified in the Farquhar-Ball-Berry photosynthesis-stomatal conductance model confirms field observations of increasing gs under elevated CO2 in hot dry conditions. Contrary to the general assumption, positive gs responses to elevated CO2, although relatively rare, are a feature of woody taxa adapted to warm, low-humidity conditions, and this response is also demonstrated in global simulations using the Community Land Model (CLM4). Conclusions The results contradict the over-simplistic notion that global vegetation always responds with decreasing gs to elevated CO2, a finding that has important implications for predicting future vegetation feedbacks on the hydrological cycle at the regional level.
Annals of Botany | 2018
C. Purcell; Sven P. Batke; Charilaos Yiotis; Rodrigo Caballero; W. K. Soh; M Murray; Jennifer C. McElwain
1School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland, 2Department of Biology, Edge Hill University, St. Helens Road, Ormskirk L39 4QP, UK, 3Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden and 4Botany Department, Trinity College Dublin, College Green, Dublin 2, Ireland *For correspondence. E-mail: [email protected] †Joint first authors.
Frontiers in Plant Science | 2016
Christiana Evans-Fitz.Gerald; Amanda S. Porter; Charilaos Yiotis; Caroline Elliott-Kingston; Jennifer C. McElwain
In order to be successful in a given environment a plant should invest in a vein network and stomatal distribution that ensures balance between both water supply and demand. Vein density (Dv) and stomatal density (SD) have been shown to be strongly positively correlated in response to a range of environmental variables in more recently evolved plant species, but the extent of this relationship has not been confirmed in earlier diverging plant lineages. In order to examine the effect of a changing atmosphere on the relationship between Dv and SD, five early-diverging plant species representing two different reproductive plant grades were grown for 7 months in a palaeo-treatment comprising an O2:CO2 ratio that has occurred multiple times throughout plant evolutionary history. Results show a range of species-specific Dv and SD responses to the palaeo-treatment, however, we show that the strong relationship between Dv and SD under modern ambient atmospheric composition is maintained following exposure to the palaeo-treatment. This suggests strong inter-specific co-ordination between vein and stomatal traits for our study species even under relatively extreme environmental change. This co-ordination supports existing plant function proxies that use the distance between vein endings and stomata (Dm) to infer plant palaeo-physiology.
Flora | 2006
Charilaos Yiotis; Yiannis Manetas; George K. Psaras
Flora | 2008
Aelita Konoplyova; Y. Petropoulou; Charilaos Yiotis; George K. Psaras; Yiannis Manetas