Charla A. Andrews
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charla A. Andrews.
The Journal of Infectious Diseases | 2006
Andrew T. Catanzaro; Richard A. Koup; Mario Roederer; Robert T. Bailer; Mary E. Enama; Zoe Moodie; Lin Gu; Julie E. Martin; Laura Novik; Bimal K. Chakrabarti; Bryan T. Butman; Jason G. D. Gall; C. Richter King; Charla A. Andrews; Rebecca L. Sheets; Phillip L. Gomez; John R. Mascola; Gary J. Nabel
BACKGROUND The development of an effective human immunodeficiency virus (HIV) vaccine is a high global priority. Here, we report the safety, tolerability, and immunogenicity of a replication-defective recombinant adenovirus serotype 5 (rAd5) vector HIV-1 candidate vaccine. METHODS The vaccine is a mixture of 4 rAd5 vectors that express HIV-1 subtype B Gag-Pol fusion protein and envelope (Env) from subtypes A, B, and C. Healthy, uninfected adults were randomized to receive 1 intramuscular injection of placebo (n=6) or vaccine at dose levels of 10(9) (n=10), 10(10) (n=10), or 10(11) (n=10) particle units and were followed for 24 weeks to assess immunogenicity and safety. RESULTS The vaccine was well tolerated but was associated with more reactogenicity at the highest dose. At week 4, vaccine antigen-specific T cell responses were detected in 28 (93.3%) and 18 (60%) of 30 vaccine recipients for CD4(+) and CD8(+) T cells, respectively, by intracellular cytokine staining assay and in 22 (73%) of 30 vaccine recipients by enzyme-linked immunospot assay. Env-specific antibody responses were detected in 15 (50%) of 30 vaccine recipients by enzyme-linked immunosorbant assay and in 28 (93.3%) of 30 vaccine recipients by immunoprecipitation followed by Western blotting. No neutralizing antibody was detected. CONCLUSIONS A single injection induced HIV-1 antigen-specific CD4(+) T cell, CD8(+) T cell, and antibody responses in the majority of vaccine recipients. This multiclade rAd5 HIV-1 vaccine is now being evaluated in combination with a multiclade HIV-1 DNA plasmid vaccine.
The Journal of Infectious Diseases | 2006
Barney S. Graham; Richard A. Koup; Mario Roederer; Robert T. Bailer; Mary E. Enama; Zoe Moodie; Julie E. Martin; Margaret McCluskey; Bimal K. Chakrabarti; Laurie Lamoreaux; Charla A. Andrews; Phillip L. Gomez; John R. Mascola
BACKGROUND Gene-based vaccine delivery is an important strategy in the development of a preventive vaccine for acquired immunodeficiency syndrome (AIDS). Vaccine Research Center (VRC) 004 is the first phase 1 dose-escalation study of a multiclade HIV-1 DNA vaccine. METHODS VRC-HIVDNA009-00-VP is a 4-plasmid mixture encoding subtype B Gag-Pol-Nef fusion protein and modified envelope (Env) constructs from subtypes A, B, and C. Fifty healthy, uninfected adults were randomized to receive either placebo (n=10) or study vaccine at 2 mg (n=5), 4 mg (n=20), or 8 mg (n=15) by needle-free intramuscular injection. Humoral responses (measured by enzyme-linked immunosorbant assay, Western blotting, and neutralization assay) and T cell responses (measured by enzyme-linked immunospot assay and intracellular cytokine staining after stimulation with antigen-specific peptide pools) were measured. RESULTS The vaccine was well tolerated and induced cellular and humoral responses. The maximal CD4(+) and CD8(+) T cell responses occurred after 3 injections and were in response to Env peptide pools. The pattern of cytokine expression by vaccine-induced HIV-specific T cells evolved over time, with a diminished frequency of interferon- gamma -producing T cells and an increased frequency of interleukin-2-producing T cells at 1 year. CONCLUSIONS DNA vaccination induced antibody to and T cell responses against 3 major HIV-1 subtypes and will be further evaluated as a potential component of a preventive AIDS vaccine regimen.
The Journal of Infectious Diseases | 2007
Julie E. Martin; Theodore C. Pierson; Sarah Hubka; Steve Rucker; Ingelise J. Gordon; Mary E. Enama; Charla A. Andrews; Qing Xu; Brent S. Davis; Martha Nason; Michael P. Fay; Richard A. Koup; Mario Roederer; Robert T. Bailer; Phillip L. Gomez; John R. Mascola; Gwong-Jen J. Chang; Gary J. Nabel; Barney S. Graham
BACKGROUND West Nile virus (WNV) is a mosquito-borne flavivirus that can cause severe meningitis and encephalitis in infected individuals. We report the safety and immunogenicity of a WNV DNA vaccine in its first phase 1 human study. METHODS A single-plasmid DNA vaccine encoding the premembrane and the envelope glycoproteins of the NY99 strain of WNV was evaluated in an open-label study in 15 healthy adults. Twelve subjects completed the 3-dose vaccination schedule, and all subjects completed 32 weeks of evaluation for safety and immunogenicity. The development of a vaccine-induced immune response was assessed by enzyme-linked immunosorbant assay, neutralization assays, intracelluar cytokine staining, and enzyme-linked immunospot assay. RESULTS The vaccine was safe and well tolerated, with no significant adverse events. Vaccine-induced T cell and antibody responses were detected in the majority of subjects. Neutralizing antibody to WNV was detected in all subjects who completed the 3-dose vaccination schedule, at levels shown to be protective in studies of horses, an incidental natural host for WNV. CONCLUSIONS Further assessment of this DNA platform for human immunization against WNV is warranted. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00106769 .
Vaccine | 2010
Julie E. Ledgerwood; Pamela Costner; N. Desai; LaSonji A. Holman; Mary E. Enama; Galina Yamshchikov; Sabue Mulangu; Zonghui Hu; Charla A. Andrews; R.A. Sheets; Richard A. Koup; Mario Roederer; Robert T. Bailer; John R. Mascola; Maria Grazia Pau; Nancy J. Sullivan; Jaap Goudsmit; Gary J. Nabel; Barney S. Graham
Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of protective immunity is possible and safety and human immunogenicity has been demonstrated in a previous Phase I clinical trial of a 1st generation Ebola DNA vaccine. We now report the safety and immunogenicity of a recombinant adenovirus serotype 5 (rAd5) vaccine encoding the envelope glycoprotein (GP) from the Zaire and Sudan Ebola virus species, in a randomized, placebo-controlled, double-blinded, dose escalation, Phase I human study. Thirty-one healthy adults received vaccine at 2×10(9) (n=12), or 2×10(10) (n=11) viral particles or placebo (n=8) as an intramuscular injection. Antibody responses were assessed by ELISA and neutralizing assays; and T cell responses were assessed by ELISpot and intracellular cytokine staining assays. This recombinant Ebola virus vaccine was safe and subjects developed antigen specific humoral and cellular immune responses.
Toxicological Sciences | 2006
Rebecca L. Sheets; Judith Stein; T. Scott Manetz; Chris Duffy; Martha Nason; Charla A. Andrews; Wing-Pui Kong; Gary J. Nabel; Phillip L. Gomez
Abstract The Vaccine Research Center has developed a number of vaccine candidates for different diseases/infectious agents (HIV-1, Severe Acute Respiratory Syndrome virus, West Nile virus, and Ebola virus, plus a plasmid cytokine adjuvant—IL-2/Ig) based on a DNA plasmid vaccine platform. To support the clinical development of each of these vaccine candidates, preclinical studies have been performed in mice or rabbits to determine where in the body these plasmid vaccines would biodistribute and how rapidly they would clear. In the course of these studies, it has been observed that regardless of the gene insert (expressing the vaccine immunogen or cytokine adjuvant) and regardless of the promoter used to drive expression of the gene insert in the plasmid backbone, the plasmid vaccines do not biodistribute widely and remain essentially in the site of injection, in the muscle and overlying subcutis. Even though ∼ 1014 molecules are inoculated in the studies in rabbits, by day 8 or 9 (∼ 1 week postinoculation), already all but on the order of 104–106 molecules per microgram of DNA extracted from tissue have been cleared at the injection site. Over the course of 2 months, the plasmid clears from the site of injection with only a small percentage of animals (generally 10–20%) retaining a small number of copies (generally around 100 copies) in the muscle at the injection site. This pattern of biodistribution (confined to the injection site) and clearance (within 2 months) is consistent regardless of differences in the promoter in the plasmid backbone or differences in the gene insert being expressed by the plasmid vaccine. In addition, integration has not been observed with plasmid vaccine candidates inoculated i.m. by Biojector 2000 or by needle and syringe. These data build on the repeated-dose toxicology studies performed (see companion article, Sheets et al., 2006) to demonstrate the safety and suitability for investigational human use of DNA plasmid vaccine candidates for a variety of infectious disease prevention indications.
Vaccine | 2008
Julie E. Martin; Mark K. Louder; LaSonji A. Holman; Ingelise J. Gordon; Mary E. Enama; Brenda D. Larkin; Charla A. Andrews; Leatrice Vogel; Richard A. Koup; Mario Roederer; Robert T. Bailer; Phillip L. Gomez; Martha Nason; John R. Mascola; Gary J. Nabel; Barney S. Graham
Abstract Background The severe acute respiratory syndrome (SARS) virus is a member of the Coronaviridae (CoV) family that first appeared in the Guangdong Province of China in 2002 and was recognized as an emerging infectious disease in March 2003. Over 8000 cases and 900 deaths occurred during the epidemic. We report the safety and immunogenicity of a SARS DNA vaccine in a Phase I human study. Methods A single-plasmid DNA vaccine encoding the Spike (S) glycoprotein was evaluated in 10 healthy adults. Nine subjects completed the 3 dose vaccination schedule and were evaluated for vaccine safety and immune responses. Immune response was assessed by intracellular cytokine staining (ICS), ELISpot, ELISA, and neutralization assays. Results The vaccine was well tolerated. SARS-CoV-specific antibody was detected by ELISA in 8 of 10 subjects and neutralizing antibody was detected in all subjects who received 3 doses of vaccine. SARS-CoV-specific CD4+ T-cell responses were detected in all vaccinees, and CD8+ T-cell responses in ∼20% of individuals. Conclusions The VRC SARS DNA vaccine was well tolerated and produced cellular immune responses and neutralizing antibody in healthy adults.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Kaimei Song; Diane L. Bolton; Chih-Jen Wei; Robert L. Wilson; Jeremy V. Camp; Saran Bao; Joseph J. Mattapallil; Leonore A. Herzenberg; Leonard A. Herzenberg; Charla A. Andrews; Jerald C. Sadoff; Jaap Goudsmit; Maria Grazia Pau; Robert A. Seder; Pamela A. Kozlowski; Gary J. Nabel; Mario Roederer; Srinivas S. Rao
Successful vaccination against respiratory infections requires elicitation of high levels of potent and durable humoral and cellular responses in the lower airways. To accomplish this goal, we used a fine aerosol that targets the entire lung surface through normal respiration to deliver replication-incompetent recombinant adenoviral vectors expressing gene products from several infectious pathogens. We show that this regimen induced remarkably high and stable lung T-cell responses in nonhuman primates and that it also generated systemic and respiratory tract humoral responses of both IgA and IgG isotypes. Moreover, strong immunogenicity was achieved even in animals with preexisting antiadenoviral immunity, overcoming a critical hurdle to the use of these vectors in humans, who commonly are immune to adenoviruses. The immunogenicity profile elicited with this regimen, which is distinct from either intramuscular or intranasal delivery, has highly desirable properties for protection against respiratory pathogens. We show that it can be used repeatedly to generate mucosal humoral, CD4, and CD8 T-cell responses and as such may be applicable to other mucosally transmitted pathogens such as HIV. Indeed, in a lethal challenge model, we show that aerosolized recombinant adenoviral immunization completely protects ferrets against H5N1 highly pathogenic avian influenza virus. Thus, genetic immunization in the lung offers a powerful platform approach to generating protective immune responses against respiratory pathogens.
The Journal of Infectious Diseases | 2013
Joseph P. Casazza; Kathryn A. Bowman; Selorm Adzaku; Emily C. Smith; Mary E. Enama; Robert T. Bailer; David A. Price; Emma Gostick; Ingelise J. Gordon; David R. Ambrozak; Martha Nason; Mario Roederer; Charla A. Andrews; Frank Maldarelli; Ann Wiegand; Mary Kearney; Deborah Persaud; Carrie Ziemniak; Raphael Gottardo; Julie E. Ledgerwood; Barney S. Graham; Richard A. Koup
BACKGROUND The licensing of herpes zoster vaccine has demonstrated that therapeutic vaccination can help control chronic viral infection. Unfortunately, human trials of immunodeficiency virus (HIV) vaccine have shown only marginal efficacy. METHODS In this double-blind study, 17 HIV-infected individuals with viral loads of <50 copies/mL and CD4(+) T-cell counts of >350 cells/µL were randomly assigned to the vaccine or placebo arm. Vaccine recipients received 3 intramuscular injections of HIV DNA (4 mg) coding for clade B Gag, Pol, and Nef and clade A, B, and C Env, followed by a replication-deficient adenovirus type 5 boost (10(10) particle units) encoding all DNA vaccine antigens except Nef. Humoral, total T-cell, and CD8(+) cytotoxic T-lymphocyte (CTL) responses were studied before and after vaccination. Single-copy viral loads and frequencies of latently infected CD4(+) T cells were determined. RESULTS Vaccination was safe and well tolerated. Significantly stronger HIV-specific T-cell responses against Gag, Pol, and Env, with increased polyfunctionality and a broadened epitope-specific CTL repertoire, were observed after vaccination. No changes in single-copy viral load or the frequency of latent infection were observed. CONCLUSIONS Vaccination of individuals with existing HIV-specific immunity improved the magnitude, breadth, and polyfunctionality of HIV-specific memory T-cell responses but did not impact markers of viral control. CLINICAL TRIALS REGISTRATION NCT00270465.
Poultry Science | 2009
Srinivas S. Rao; D. Styles; Wing-Pui Kong; Charla A. Andrews; J. P. Gorres; Gary J. Nabel
ABSTRACT Highly pathogenic avian influenza A (HPAI) viruses, specifically H5N1 strains, cause widespread morbidity and mortality in domestic and wild bird populations, and recent outbreaks have resulted in severe economic losses. Although still largely confined to birds, more than 300 human cases resulting in deaths have been reported to the World Health Organization. These sporadic human cases result from direct transmission from infected birds; however, a sustained outbreak of HPAI H5N1 increases the potential for the emergence of a human pandemic strain. One approach to the containment of HPAI H5N1 is the development of vaccines for use in poultry. Currently, the majority of avian influenza vaccines for poultry are traditional whole-virus vaccines produced in eggs. Although highly efficacious, these vaccines are hindered by long production times, inflexibility in quickly altering antigenic composition, and limited breadth of protection. Newer vaccines with more efficient manufacturing processes, enhanced efficacy, and cross-protection against multiple strains would improve preparedness. Reverse genetics technology has provided one such method, and emerging gene-based vaccines offer another approach that reduces dependence on egg-based production and human exposure to pathogenic viruses. Gene-based vaccines also provide rapid manufacturing, enhanced precision and versatility, and the capacity to protect against a broad range of viral subtypes. Vectors for these vaccines include replication-defective viruses, bacterial vectors, and DNA. Here we review the features of gene-based vaccination that may facilitate the control of HPAI H5N1 in poultry, and highlight the development of a hemagglutinin-based multivalent DNA vaccine that confers protection in mice and chickens.
Vaccine | 2007
Andrew T. Catanzaro; Mario Roederer; Richard A. Koup; Robert T. Bailer; Mary E. Enama; Martha Nason; Julie E. Martin; Steve Rucker; Charla A. Andrews; Phillip L. Gomez; John R. Mascola; Gary J. Nabel; Barney S. Graham