Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles A. LeDuc is active.

Publication


Featured researches published by Charles A. LeDuc.


Circulation-cardiovascular Genetics | 2012

Whole Exome Sequencing to Identify a Novel Gene (Caveolin-1) Associated with Human Pulmonary Arterial Hypertension

Eric D. Austin; Lijiang Ma; Charles A. LeDuc; Erika B. Rosenzweig; Alain C. Borczuk; John A. Phillips; Teresa Palomero; Pavel Sumazin; Hyunjae R. Kim; Megha H. Talati; James West; James E. Loyd; Wendy K. Chung

Background— Heritable and idiopathic pulmonary arterial hypertension (PAH) are phenotypically identical and associated with mutations in several genes related to transforming growth factor (TGF) beta signaling, including bone morphogenetic protein receptor type 2, activin receptor-like kinase 1, endoglin, and mothers against decapentaplegic 9. Approximately 25% of heritable cases lack identifiable mutations in any of these genes. Methods and Results— We used whole exome sequencing to study a 3-generation family with multiple affected family members with PAH, but no identifiable TGF beta mutation. We identified a frameshift mutation in caveolin-1 (CAV1), which encodes a membrane protein of caveolae abundant in the endothelium and other cells of the lung. An independent de novo frameshift mutation was identified in a child with idiopathic PAH. Western blot analysis demonstrated a reduction in caveolin-1 protein, while lung tissue immunostaining studies demonstrated a reduction in normal caveolin-1 density within the endothelial cell layer of small arteries. Conclusions— Our study represents successful elucidation of a dominant Mendelian disorder using whole exome sequencing. Mutations in CAV1 are associated in rare cases with PAH. This may have important implications for pulmonary vascular biology, as well as PAH-directed therapeutic development.


Obesity | 2012

Responses of gut microbiota to diet composition and weight loss in lean and obese mice.

Yann Ravussin; Omry Koren; Aymé Spor; Charles A. LeDuc; Roee Gutman; Jesse Stombaugh; Rob Knight; Ruth E. Ley; Rudolph L. Leibel

Maintenance of a reduced body weight is accompanied by a decrease in energy expenditure beyond that accounted for by reduced body mass and composition, as well as by an increased drive to eat. These effects appear to be due—in part—to reductions in circulating leptin concentrations due to loss of body fat. Gut microbiota have been implicated in the regulation of body weight. The effects of weight loss on qualitative aspects of gut microbiota have been studied in humans and mice, but these studies have been confounded by concurrent changes in diet composition, which influence microbial community composition. We studied the impact of 20% weight loss on the microbiota of diet‐induced obese (DIO: 60% calories fat) mice on a high‐fat diet (HFD). Weight‐reduced DIO (DIO‐WR) mice had the same body weight and composition as control (CON) ad‐libitum (AL) fed mice being fed a control diet (10% calories fat), allowing a direct comparison of diet and weight‐perturbation effects. Microbial community composition was assessed by pyrosequencing 16S rRNA genes derived from the ceca of sacrificed animals. There was a strong effect of diet composition on the diversity and composition of the microbiota. The relative abundance of specific members of the microbiota was correlated with circulating leptin concentrations and gene expression levels of inflammation markers in subcutaneous white adipose tissue in all mice. Together, these results suggest that both host adiposity and diet composition impact microbiota composition, possibly through leptin‐mediated regulation of mucus production and/or inflammatory processes that alter the gut habitat.


Journal of Clinical Investigation | 2011

A mutation in the leptin receptor is associated with Entamoeba histolytica infection in children

Priya Duggal; Xiaoti Guo; Rashidul Haque; Kristine M. Peterson; Stacy M. Ricklefs; Dinesh Mondal; Faisal Alam; Zannatun Noor; Hans P. Verkerke; Chelsea Marie; Charles A. LeDuc; Streamson C. Chua; Martin G. Myers; Rudolph L. Leibel; Eric R. Houpt; Carol A. Gilchrist; Alan Sher; Stephen F. Porcella; William A. Petri

Malnutrition substantially increases susceptibility to Entamoeba histolytica in children. Leptin is a hormone produced by adipocytes that inhibits food intake, influences the immune system, and is suppressed in malnourished children. Therefore we hypothesized that diminished leptin function may increase susceptibility to E. histolytica infection. We prospectively observed a cohort of children, beginning at preschool age, for infection by the parasite E. histolytica every other day over 9 years and evaluated them for genetic variants in leptin (LEP) and the leptin receptor (LEPR). We found increased susceptibility to intestinal infection by this parasite associated with an amino acid substitution in the cytokine receptor homology domain 1 of LEPR. Children carrying the allele for arginine (223R) were nearly 4 times more likely to have an infection compared with those homozygous for the ancestral glutamine allele (223Q). An association of this allele with amebic liver abscess was also determined in an independent cohort of adult patients. In addition, mice carrying at least 1 copy of the R allele of Lepr were more susceptible to infection and exhibited greater levels of mucosal destruction and intestinal epithelial apoptosis after amebic infection. These findings suggest that leptin signaling is important in mucosal defense against amebiasis and that polymorphisms in the leptin receptor explain differences in susceptibility of children in the Bangladesh cohort to amebiasis.


Cell Metabolism | 2014

Hypomorphism for RPGRIP1L, a Ciliary Gene Vicinal to the FTO Locus, Causes Increased Adiposity in Mice

George Stratigopoulos; Jayne F. Martin Carli; Diana R. O’Day; Liheng Wang; Charles A. LeDuc; Patricia Lanzano; Wendy K. Chung; Michael Rosenbaum; Dieter Egli; Dan Doherty; Rudolph L. Leibel

Common polymorphisms in the first intron of FTO are associated with increased body weight in adults. Previous studies have suggested that a CUX1-regulatory element within the implicated FTO region controls expression of FTO and the nearby ciliary gene, RPGRIP1L. Given the role of ciliary genes in energy homeostasis, we hypothesized that mice hypomorphic for Rpgrip1l would display increased adiposity. We find that Rpgrip1l⁺/⁻ mice are hyperphagic and fatter, and display diminished suppression of food intake in response to leptin administration. In the hypothalamus of Rpgrip1l⁺/⁻ mice, and in human fibroblasts with hypomorphic mutations in RPGRIP1L, the number of AcIII-positive cilia is diminished, accompanied by impaired convening of the leptin receptor to the vicinity of the cilium, and diminished pStat3 in response to leptin. These findings suggest that RPGRIP1L may be partly or exclusively responsible for the obesity susceptibility signal at the FTO locus.


Journal of Biological Chemistry | 2011

Cut-like Homeobox 1 (CUX1) Regulates Expression of the Fat Mass and Obesity-associated and Retinitis Pigmentosa GTPase Regulator-interacting Protein-1-like (RPGRIP1L) Genes and Coordinates Leptin Receptor Signaling

George Stratigopoulos; Charles A. LeDuc; Maria Laura Cremona; Wendy K. Chung; Rudolph L. Leibel

The first intron of FTO contains common single nucleotide polymorphisms associated with body weight and adiposity in humans. In an effort to identify the molecular basis for this association, we discovered that FTO and RPGRIP1L (a ciliary gene located in close proximity to the transcriptional start site of FTO) are regulated by isoforms P200 and P110 of the transcription factor, CUX1. This regulation occurs via a single AATAAATA regulatory site (conserved in the mouse) within the FTO intronic region associated with adiposity in humans. Single nucleotide polymorphism rs8050136 (located in this regulatory site) affects binding affinities of P200 and P110. Promoter-probe analysis revealed that binding of P200 to this site represses FTO, whereas binding of P110 increases transcriptional activity from the FTO as well as RPGRIP1L minimal promoters. Reduced expression of Fto or Rpgrip1l affects leptin receptor isoform b trafficking and leptin signaling in N41 mouse hypothalamic or N2a neuroblastoma cells in vitro. Leptin receptor clusters in the vicinity of the cilium of arcuate hypothalamic neurons in C57BL/6J mice treated with leptin, but not in fasted mice, suggesting a potentially important role of the cilium in leptin signaling that is, in part, regulated by FTO and RPGRIP1L. Decreased Fto/Rpgrip1l expression in the arcuate hypothalamus coincides with decreased nuclear enzymatic activity of a protease (cathepsin L) that has been shown to cleave full-length CUX1 (P200) to P110. P200 disrupts (whereas P110 promotes) leptin receptor isoform b clustering in the vicinity of the cilium in vitro. Clustering of the receptor coincides with increased leptin signaling as reflected in protein levels of phosphorylated Stat3 (p-Stat3). Association of the FTO locus with adiposity in humans may reflect functional consequences of A/C alleles at rs8050136. The obesity-risk (A) allele shows reduced affinity for the FTO and RPGRIP1L transcriptional activator P110, leading to the following: 1) decreased FTO and RPGRIP1L mRNA levels; 2) reduced LEPR trafficking to the cilium; and, as a consequence, 3) a diminished cellular response to leptin.


Journal of Clinical Investigation | 2013

iPSC-derived β cells model diabetes due to glucokinase deficiency

Haiqing Hua; Linshan Shang; Hector Martinez; Matthew Freeby; Mary Pat Gallagher; Thomas Ludwig; Liyong Deng; Ellen Greenberg; Charles A. LeDuc; Wendy K. Chung; Robin Goland; Rudolph L. Leibel; Dieter Egli

Diabetes is a disorder characterized by loss of β cell mass and/or β cell function, leading to deficiency of insulin relative to metabolic need. To determine whether stem cell-derived β cells recapitulate molecular-physiological phenotypes of a diabetic subject, we generated induced pluripotent stem cells (iPSCs) from subjects with maturity-onset diabetes of the young type 2 (MODY2), which is characterized by heterozygous loss of function of the gene encoding glucokinase (GCK). These stem cells differentiated into β cells with efficiency comparable to that of controls and expressed markers of mature β cells, including urocortin-3 and zinc transporter 8, upon transplantation into mice. While insulin secretion in response to arginine or other secretagogues was identical to that in cells from healthy controls, GCK mutant β cells required higher glucose levels to stimulate insulin secretion. Importantly, this glucose-specific phenotype was fully reverted upon gene sequence correction by homologous recombination. Our results demonstrate that iPSC-derived β cells reflect β cell-autonomous phenotypes of MODY2 subjects, providing a platform for mechanistic analysis of specific genotypes on β cell function.


Cell Stem Cell | 2014

Comparable Frequencies of Coding Mutations and Loss of Imprinting in Human Pluripotent Cells Derived by Nuclear Transfer and Defined Factors

Bjarki Johannesson; Ido Sagi; Athurva Gore; Daniel Paull; Mitsutoshi Yamada; Tamar Golan-Lev; Zhe Li; Charles A. LeDuc; Yufeng Shen; Samantha Stern; Nanfang Xu; Hong Ma; Eunju Kang; Shoukhrat Mitalipov; Mark V. Sauer; Kun Zhang; Nissim Benvenisty; Dieter Egli

The recent finding that reprogrammed human pluripotent stem cells can be derived by nuclear transfer into human oocytes as well as by induced expression of defined factors has revitalized the debate on whether one approach might be advantageous over the other. Here we compare the genetic and epigenetic integrity of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal, and adult origin. The two cell types showed similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs had comparable numbers of de novo coding mutations, but significantly more than parthenogenetic ESCs. As iPSCs, NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of derivation approach.


Diabetes | 2014

β-Cell Dysfunction Due to Increased ER Stress in a Stem Cell Model of Wolfram Syndrome

Linshan Shang; Haiqing Hua; Kylie S. Foo; Hector Martinez; Kazuhisa Watanabe; Matthew Zimmer; David J. Kahler; Matthew Freeby; Wendy K. Chung; Charles A. LeDuc; Robin Goland; Rudolph L. Leibel; Dieter Egli

Wolfram syndrome is an autosomal recessive disorder caused by mutations in WFS1 and is characterized by insulin-dependent diabetes mellitus, optic atrophy, and deafness. To investigate the cause of β-cell failure, we used induced pluripotent stem cells to create insulin-producing cells from individuals with Wolfram syndrome. WFS1-deficient β-cells showed increased levels of endoplasmic reticulum (ER) stress molecules and decreased insulin content. Upon exposure to experimental ER stress, Wolfram β-cells showed impaired insulin processing and failed to increase insulin secretion in response to glucose and other secretagogues. Importantly, 4-phenyl butyric acid, a chemical protein folding and trafficking chaperone, restored normal insulin synthesis and the ability to upregulate insulin secretion. These studies show that ER stress plays a central role in β-cell failure in Wolfram syndrome and indicate that chemical chaperones might have therapeutic relevance under conditions of ER stress in Wolfram syndrome and other forms of diabetes.


PLOS Genetics | 2008

Positional Cloning of “Lisch-like”, a Candidate Modifier of Susceptibility to Type 2 Diabetes in Mice

Marija Dokmanovic-Chouinard; Wendy K. Chung; Jean-Claude Chevre; Elizabeth Watson; Jason Yonan; Beebe Wiegand; Yana Bromberg; Nao Wakae; Christopher V.E. Wright; John D. Overton; Sujoy Ghosh; Ganesh M. Sathe; Carina Ammala; Kathleen K. Brown; Rokuro Ito; Charles A. LeDuc; Keely Solomon; Stuart G. Fischer; Rudolph L. Leibel

In 404 Lepob/ob F2 progeny of a C57BL/6J (B6) x DBA/2J (DBA) intercross, we mapped a DBA-related quantitative trait locus (QTL) to distal Chr1 at 169.6 Mb, centered about D1Mit110, for diabetes-related phenotypes that included blood glucose, HbA1c, and pancreatic islet histology. The interval was refined to 1.8 Mb in a series of B6.DBA congenic/subcongenic lines also segregating for Lepob. The phenotypes of B6.DBA congenic mice include reduced β-cell replication rates accompanied by reduced β-cell mass, reduced insulin/glucose ratio in blood, reduced glucose tolerance, and persistent mild hypoinsulinemic hyperglycemia. Nucleotide sequence and expression analysis of 14 genes in this interval identified a predicted gene that we have designated “Lisch-like” (Ll) as the most likely candidate. The gene spans 62.7 kb on Chr1qH2.3, encoding a 10-exon, 646–amino acid polypeptide, homologous to Lsr on Chr7qB1 and to Ildr1 on Chr16qB3. The largest isoform of Ll is predicted to be a transmembrane molecule with an immunoglobulin-like extracellular domain and a serine/threonine-rich intracellular domain that contains a 14-3-3 binding domain. Morpholino knockdown of the zebrafish paralog of Ll resulted in a generalized delay in endodermal development in the gut region and dispersion of insulin-positive cells. Mice segregating for an ENU-induced null allele of Ll have phenotypes comparable to the B.D congenic lines. The human ortholog, C1orf32, is in the middle of a 30-Mb region of Chr1q23-25 that has been repeatedly associated with type 2 diabetes.


American Journal of Human Genetics | 2013

A Recurrent PDGFRB Mutation Causes Familial Infantile Myofibromatosis

Yee Him Cheung; Tenzin Gayden; Philippe M. Campeau; Charles A. LeDuc; Donna Russo; Van-Hung Nguyen; Jiancheng Guo; Ming Qi; Yanfang Guan; Steffen Albrecht; Brenda Moroz; Karen W. Eldin; James T. Lu; Jeremy Schwartzentruber; David Malkin; Albert M. Berghuis; Sherif Emil; Richard A. Gibbs; David L. Burk; Megan R. Vanstone; Brendan Lee; David Orchard; Kym M. Boycott; Wendy K. Chung; Nada Jabado

Infantile myofibromatosis (IM) is the most common benign fibrous tumor of soft tissues affecting young children. By using whole-exome sequencing, RNA sequencing, and targeted sequencing, we investigated germline and tumor DNA in individuals from four distinct families with the familial form of IM and in five simplex IM cases with no previous family history of this disease. We identified a germline mutation c.1681C>T (p.Arg561Cys) in platelet-derived growth factor receptor β (PDGFRB) in all 11 affected individuals with familial IM, although none of the five individuals with nonfamilial IM had mutations in this gene. We further identified a second heterozygous mutation in PDGFRB in two myofibromas from one of the affected familial cases, indicative of a potential second hit in this gene in the tumor. PDGFR-β promotes growth of mesenchymal cells, including blood vessels and smooth muscles, which are affected in IM. Our findings indicate p.Arg561Cys substitution in PDGFR-β as a cause of the dominant form of this disease. They provide a rationale for further investigations of this specific mutation and gene to assess the benefits of targeted therapies against PDGFR-β in aggressive life-threatening familial forms of the disease.

Collaboration


Dive into the Charles A. LeDuc's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge