Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles A. Lunn is active.

Publication


Featured researches published by Charles A. Lunn.


Nature Structural & Molecular Biology | 1999

Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation.

Thierry O. Fischmann; Alan Hruza; Xiao Da Niu; James Fossetta; Charles A. Lunn; Edward Dolphin; Andrew Prongay; Paul Reichert; Daniel Lundell; Satwant K. Narula; Patricia C. Weber

Crystal structures of human endothelial nitric oxide synthase (eNOS) and human inducible NOS (iNOS) catalytic domains were solved in complex with the arginine substrate and an inhibitor S-ethylisothiourea (SEITU), respectively. The small molecules bind in a narrow cleft within the larger active-site cavity containing heme and tetrahydrobiopterin. Both are hydrogen-bonded to a conserved glutamate (eNOS E361, iNOS E377). The active-site residues of iNOS and eNOS are nearly identical. Nevertheless, structural comparisons provide a basis for design of isozyme-selective inhibitors. The high-resolution, refined structures of eNOS (2.4 Å resolution) and iNOS (2.25 Å resolution) reveal an unexpected structural zinc situated at the intermolecular interface and coordinated by four cysteines, two from each monomer.


FEBS Letters | 1997

Purification of ADAM 10 from bovine spleen as a TNFα convertase

Charles A. Lunn; Xuedong Fan; Barbara Dalie; Kenneth Miller; Paul J. Zavodny; Satwant K. Narula; Daniel Lundell

We have purified a protease with characteristics of TNFα convertase from bovine spleen membranes. Peptide sequencing of the purified protein identified it as ADAM 10 (Genbank accession no. Z21961). This metalloprotease cleaves a recombinant proTNFα substrate to mature TNFα, and can cleave a synthetic peptide substrate to yield the mature TNFα amino terminus in vitro. The enzyme is sensitive to a hydroxamate inhibitor of MMPs, but insensitive to phosphoramidon. In addition, cloned ADAM 10 mediates proTNFα processing in a processing‐incompetent cell line.


British Journal of Pharmacology | 2008

Biology and therapeutic potential of cannabinoid CB2 receptor inverse agonists.

Charles A. Lunn; Reich Ep; Jay S. Fine; Brian J. Lavey; Joseph A. Kozlowski; R W Hipkin; Daniel Lundell; Loretta A. Bober

Evidence has emerged suggesting a role for the cannabinoid CB2 receptor in immune cell motility. This provides a rationale for a novel and generalized immunoregulatory role for cannabinoid CB2 receptor‐specific compounds. In support of this possibility, we will review the biology of a class of cannabinoid CB2 receptor—specific inverse agonist, the triaryl bis‐sulfones. We will show that one candidate, Sch.414319, is potent and selective for the cannabinoid CB2 receptor, based on profiling studies using biochemical assays for 45 enzymes and 80 G‐protein coupled receptors and ion channels. We will describe initial mechanistic studies using this optimized triaryl bis‐sulfone, showing that the compound exerts a broad effect on cellular protein phosphorylations in human monocytes. This profile includes the down regulation of a required phosphorylation of the monocyte‐specific actin bundling protein L‐plastin. We suggest that this observation may provide a mechanism for the observed activity of Sch.414319 in vivo. Our continued analysis of the in vivo efficacy of this compound in diverse disease models shows that Sch.414319 is a potent modulator of immune cell mobility in vivo, can modulate bone damage in antigen‐induced mono‐articular arthritis in the rat, and is uniquely potent at blocking experimental autoimmune encephalomyelitis in the rat.


Expert Review of Molecular Diagnostics | 2008

KCa3.1: target and marker for cancer, autoimmune disorder and vascular inflammation?

Chuan-Chu Chou; Charles A. Lunn; Nicholas J. Murgolo

KCa3.1 is a calcium-activated intermediate-conductance potassium ion channel. In humans the channel is expressed in several secretory organs and subtypes of hematopoietic cells, but not detected in excitable tissues. The mRNA level for KCa3.1 is upregulated in activated leukocytes, mitogen-induced endothelial cells and vascular smooth muscle cells, and several types of human cancers, suggesting a possible role for the channel in inflammatory and oncology diseases. Several potent and selective KCa3.1 blockers, including clotrimazole and its analogs TRAM-34 and ICA-17043, have been used to investigate the involvement of the channel in human disease. The compounds have been shown to suppress the proliferation of several cancer cells in vitro and the growth of the corresponding cancers in vivo, consistent with an oncologic indication. TRAM-34 also ameliorates symptoms in experimental autoimmune encephalomyelitis and several models of cardiovascular diseases, arguing for a role of the channel in inflammatory diseases. These results suggest several important opportunities for therapeutics based on KCa3.1. Further efforts will establish the optimal indication for these ion channel inhibitors.


Journal of Biomolecular Screening | 2008

Screening for Antiviral Inhibitors of the HIV Integrase—LEDGF/p75 Interaction Using the AlphaScreen™ Luminescent Proximity Assay:

Yan Hou; Debra Mcguinness; Andrew Prongay; Boris Feld; Paul Ingravallo; Robert A. Ogert; Charles A. Lunn; John A. Howe

Small-molecule inhibitors of HIV integrase (HIV IN) have emerged as a promising new class of antivirals for the treatment of HIV/AIDS. The compounds currently approved or in clinical development specifically target HIV DNA integration and were identified using strand-transfer assays targeting the HIV IN/viral DNA complex. The authors have developed a second biochemical assay for identification of HIV integrase inhibitors, targeting the interaction between HIV IN and the cellular cofactor LEDGF/p75. They developed a luminescent proximity assay (AlphaScreen™) designed to measure the association of the 80-amino-acid integrase binding domain of LEDGF/p75 with the 163-amino-acid catalytic core domain of HIV IN. This assay proved to be quite robust (with a Z′ factor of 0.84 in screening libraries arrayed as orthogonal mixtures) and successfully identified several compounds specific for this protein-protein interaction. (Journal of Biomolecular Screening 2008:406-414)


Expert Opinion on Therapeutic Targets | 2006

Targeting the CB2 receptor for immune modulation

Charles A. Lunn; Eva‐Pia Reich; Loretta A. Bober

Early work on the biology of the components of Cannabis sativa showed evidence for a potential influence on immune regulation. With the discovery of a peripheral cannabinoid receptor associated with immune cells, many laboratories have sought to link the immunoregulatory activities of cannabinoid compounds with this receptor, hoping that such compounds would lack the psychoactive effects of marijuana and other nonspecific cannabinoid agonists. In this report, the authors investigate the role of the cannabinoid CB2 receptor in immune regulation, with particular emphasis on compounds shown to regulate immune cell recruitment. The authors conclude by using the immune cell recruitment model to rationalise cannabinoid CB2 receptor-specific effects in modulating immune disease, particularly the increasing evidence for its role in experimental autoimmune encephalomyelitis and in influencing bone density.


FEBS Letters | 1996

Expression of human inducible nitric oxide synthase in Escherichia coli

James Fossetta; Xiao Da Niu; Charles A. Lunn; Paul J. Zavodny; Satwant K. Narula; Daniel Lundell

We have expressed active full‐length human inducible nitric oxide synthase (iNOS) in E. coli. Expression required co‐expression with calmodulin, a particularly tight‐binding cofactor. The extracts also required tetrahydrobiopterin to display activity. Specific activity of the purified recombinant iNOS was similar to iNOS purified from murine macrophages. This result indicates that no special processing events unique to eucaryotic cells are necessary for iNOS activity.


Journal of Biological Chemistry | 2006

Characterization of peripheral human cannabinoid receptor (hCB2) expression and pharmacology using a novel radioligand, [35S]Sch225336.

Waldemar Gonsiorek; David Hesk; Shu-Cheng Chen; David Kinsley; Jay S. Fine; James V. Jackson; Loretta A. Bober; Gregory Deno; Hong Bian; James Fossetta; Charles A. Lunn; Joseph A. Kozlowski; Brian J. Lavey; John J. Piwinski; Satwant K. Narula; Daniel Lundell; R. William Hipkin

Studies to characterize the endogenous expression and pharmacology of peripheral human cannabinoid receptor (hCB2) have been hampered by the dearth of authentic anti-hCB2 antibodies and the lack of radioligands with CB2 selectivity. We recently described a novel CB2 inverse agonist, N-[1(S)-[4-[[4-methoxy-2-[(4methoxyphenyl)sulfonyl] phenyl]sulfonyl] phenyl]ethyl]methane-sulfonamide (Sch225336), that binds hCB2 with high affinity and excellent selectivity versus hCB1. The precursor primary amine of Sch225336 was prepared and reacted directly with [35S]mesyl chloride (synthesized from commercially obtained [35S]methane sulfonic acid) to generate [35S]Sch225336. [35S]Sch225336 has high specific activity (>1400 Ci/mmol) and affinity for hCB2 (65 pm). Using [35S]Sch225336, we assayed hemopoietic cells and cell lines to quantitate the expression and pharmacology of hCB2. Lastly, we used [35S]Sch225336 for detailed autoradiographic analysis of CB2 in lymphoid tissues. Based on these data, we conclude that [35S]Sch225336 represents a unique radioligand for the study of CB2 endogenously expressed in blood cells and tissues.


Immunopharmacology and Immunotoxicology | 2007

Cannabinoid CB2-Selective Inverse Agonist Protects Against Antigen-Induced Bone Loss

Charles A. Lunn; Jay S. Fine; Alberto Rojas-Triana; James V. Jackson; Brian J. Lavey; Joseph A. Kozlowski; R. William Hipkin; Daniel Lundell; Loretta A. Bober

Work to improve the therapeutic properties of cannabinoid CB2 receptor-selective inverse agonists has led to the development of Sch.036, an aryl substituted triaryl bis-sulfone with improved oral pharmacokinetic parameters. In this report, we show that this compound blocks in vivo trafficking of various leukocyte populations, a property consistent with other members of this chemical series. This CB2-selective compound also shows efficacy in leukocyte recruitment models when added in concert with suboptimal doses of selected anti-inflammatory agents, consistent with its unique function and indicative of its potential therapeutic utility. Finally, studies with Sch.036 show that this cannabinoid CB2-specific inverse agonist can ameliorate bone damage in a rat model of relapsing-remitting arthritis. This result suggests that a cannabinoid CB2‐selective inverse agonist may help ameliorate a particularly harmful property of this inflammatory joint disease.


Journal of Industrial Microbiology & Biotechnology | 1990

Cytoplasmic and periplasmic expression of a highly basic protein, human interleukin 4, inEscherichia coli

Daniel Lundell; Robert Greenberg; Yair Alroy; Russell G. G. Condon; James Fossetta; Keith Gewain; Rob A. Kastelein; Charles A. Lunn; Richard Reim; Chandravadan Shah; Anita van Kimmenade; Satwant K. Narula

SummaryHuman IL-4 (hIL-4) has been cloned from a human T cell line based on its homology to the murine IL-4 cDNA sequence [36]. We have compared cytoplasmic and extra-cytoplasmic expression of this basic protein inEscherichia coli using various combinations of promoters, replicons and host strains. Strains producing a cytoplasmic product were most successful at heterologous protein expression, producing up to 500 mg/l of an inactive aggregated form of the protein. The biological activity of the protein could be restored by refolding the protein with guanidine hydrochloride and glutathione giving a specific activity identical to that of IL-4 derived from CHO cell lines stably transformed with an hIL-4 expression plasmid. Strains designed to secrete human IL-4 into the periplasmic space produced far less protein (approximately 5 mg/l). However, a significant fraction of this protein was detected in the culture medium. This fraction appeared to be soluble after ultracentrifugation, and demonstrated high specific activity without refolding. Leakage of heterologous protein into the culture medium may be a viable way to recover biologically active products without relying on the denaturation and refolding in vitro that can, at times, yield incorrectly folded gene product.

Collaboration


Dive into the Charles A. Lunn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge