Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles A. Pettigrew is active.

Publication


Featured researches published by Charles A. Pettigrew.


Journal of Food Protection | 2001

Comparison of Chlorine and a Prototype Produce Wash Product for Effectiveness in Killing Salmonella and Escherichia coli O157:H7 on Alfalfa Seeds

Larry R. Beuchat; Thomas E. Ward; Charles A. Pettigrew

Outbreaks of Salmonella and Escherichia coli O157:H7 infections associated with alfalfa and other seed sprouts have occurred with increased frequency in recent years. This study was undertaken to determine the efficacy of a liquid prototype produce wash product (Fit), compared with water and chlorinated water, in killing Salmonella and E. coli O157:H7 inoculated onto alfalfa seeds. We investigated the efficacy of treatments as influenced by seeds from two different lots obtained from two seeds suppliers and by two methods of inoculation. The efficacy of treatments was influenced by differences in seed lots and amount of organic material in the inoculum. Significant (alpha = 0.05) reductions in Salmonella populations on seeds treated with 20,000 ppm of chlorine or Fit for 30 min ranged from 2.3 to 2.5 log10 CFU/g and 1.7 to 2.3 log10 CFU/g, respectively. Reductions (alpha = 0.05) in E. coli O157:H7 ranged from 2.0 to 2.1 log10 CFU/g and 1.7 to more than 5.4 log10 CFU/g of seeds treated, respectively, with 20,000 ppm of chlorine or Fit. Compared with treatment with 200 ppm of chlorine, treatment with either 20,000 ppm of chlorine or Fit resulted in significantly higher reductions in populations of Salmonella and E. coli O157:H7. None of the treatments eliminated these pathogens as evidenced by their detection on enrichment of treated seeds. Considering the human health and environmental hazards associated with the use of 20,000 ppm of chlorine, Fit provides an effective alternative to chlorine as a treatment to significantly reduce bacterial pathogens that have been associated with alfalfa seeds.


Journal of Food Protection | 2010

Comparative efficacy of seven hand sanitizers against murine norovirus, feline calicivirus, and GII.4 norovirus.

Geun Woo Park; Leslie Barclay; David R. Macinga; Duane Charbonneau; Charles A. Pettigrew; Jan Vinjé

Contaminated hands or inanimate surfaces can act as a source of infection during outbreaks of human norovirus infection. We evaluated the virucidal efficacy of seven hand sanitizers containing various active ingredients, such as ethanol, triclosan, and chlorhexidine, and compared their effectiveness against feline calicivirus (FCV), murine norovirus (MNV), and a GII.4 norovirus fecal extract. We also tested the efficacy of 50, 70, and 90% of ethanol and isopropanol. Reduction of viral infectivity was measured by plaque assay, and the number of genomic copies was determined with a TaqMan real-time reverse transcription PCR assay. Based on the results of a quantitative suspension test, only one ethanol-based product (72% ethanol, pH 2.9) and one triclosan-based product (0.1% triclosan, pH 3.0) reduced the infectivity of both MNV and FCV (by >2.6 and ≥3.4 log units, respectively). Four of the seven products were effective against either MNV or FCV, whereas chlorhexidine was ineffective against both viruses. For these hand sanitizers, no correlation was found between reduced infectivity and decline of viral RNA. Ethanol and isopropanol concentrations ≥70% reduced the infectivity of MNV by ≥2.6 log units, whereas 50 and 70% ethanol reduced the infectivity of FCV by ≥2.2 log units after exposure for 5 min. The susceptibility of FCV to low pH and the relative high susceptibility of MNV to alcohols suggest that both surrogate viruses should be considered for in vitro testing of hand sanitizers.


Journal of Food Protection | 2004

Lethality of chlorine, chlorine dioxide, and a commercial fruit and vegetable sanitizer to vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis.

Larry R. Beuchat; Charles A. Pettigrew; Mario Elmen Tremblay; Brian Joseph Roselle; Alan J. Scouten

Chlorine, ClO2, and a commercial raw fruit and vegetable sanitizer were evaluated for their effectiveness in killing vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. The ultimate goal was to use one or both species as a potential surrogate(s) for Bacillus anthracis in studies that focus on determining the efficacy of sanitizers in killing the pathogen on food contact surfaces and foods. Treatment with alkaline (pH 10.5 to 11.0) ClO2 (200 μg/ml) produced by electrochemical technologies reduced populations of a five-strain mixture of vegetative cells and a five-strain mixture of spores of B. cereus by more than 5.4 and more than 6.4 log CFU/ml respectively, within 5 min. This finding compares with respective reductions of 4.5 and 1.8 log CFU/ml resulting from treatment with 200 μg/ml of chlorine. Treatment with a 1.5% acidified (pH 3.0) solution of Fit powder product was less effective, causing 2.5- and 0.4-log CFU/ml reductions in the number of B. cereus cells and spores...


Journal of Food Protection | 2004

Influence of variations in methodology on populations of Listeria monocytogenes recovered from lettuce treated with sanitizers.

Andrea B. Burnett; Montserrat H. Iturriaga; Eduardo F. Escartín; Charles A. Pettigrew; Larry R. Beuchat

The elimination of Listeria monocytogenes inoculated onto a piece of cut iceberg lettuce (3.8 by 3.8 cm) by treatment with chlorinated water (200 micrograms/ml free chlorine) and a 0.5% (wt/vol) solution of FIT Professional Line Antibacterial Cleaner (FIT) was investigated. The efficacy of the two sanitizers was not influenced by the composition of the medium used to culture the L. monocytogenes used in the inocula, the number of strains in the inoculum, or the recovery medium used to enumerate the pathogen on lettuce after treatment. Drying inoculum on lettuce for 45 min at 37 degrees C caused more cells to die or not be retrieved compared with drying inoculum for 30 min at 25 degrees C. However, the percentage of cells in the inoculum recovered from lettuce treated with chlorine or FIT was not significantly different, regardless of the drying method. Stomaching, homogenizing, or stomaching followed by homogenizing lettuce treated with sanitizers resulted in recovery of similar numbers of L. monocytogenes, indicating that stomaching and homogenizing are equivalent in extracting cells; the sequential use of both processing methods did not substantially increase the efficiency of recovery. Washing lettuce with water or treating lettuce with 200 micrograms/ml chlorine or FIT resulted in decreases in populations of 0.60, 1.76, and 1.51 log CFU per lettuce piece, respectively, regardless of variations in test parameters. Reductions caused by sanitizers were significantly greater (alpha = 0.05) than that observed for water but not significantly different from each other. It is concluded that evaluation of sanitizers for their efficacy in killing L. monocytogenes on lettuce can be determined by spot inoculating 50 microliters of a five-strain mixture of cells from 24-h cultures suspended in 5% horse serum albumen, followed by drying the inoculum for 45 min at 37 degrees C, treatment by submerging in 50 ml of sanitizer for 5 min, stomaching samples in 50 ml of Dey-Engley neutralizing broth for 2 min, and enumerating survivors on modified Oxford medium.


Journal of Environmental Polymer Degradation | 1994

Biodegradation of thermally synthesized polyaspartate

Diana D. Alford; A. P. Wheeler; Charles A. Pettigrew

Polyaspartate synthesized using thermal methods (thermal polyaspartate; TPA) has been shown to have dispersant and crystallization inhibition activities. These activities suggest that the polymer may be used in water treatment and paper processing and as a detergent and paint additive. The commercial potential for TPA is enhanced by the fact that it may be synthesized on a large scale. Therefore, a study of the biodegradation of the polymer was undertaken. TPA was produced by hydrolysis of a polysuccinimide synthesized by dry thermal polymerization of aspartic acid. The resulting polymer was a poly(α,β-dl-aspartate) having a 70% β structure and containing a racemic mixture of aspartic acid. TPA was incubated with both dilute effluent and activated sludge from a wastewater treatment plant. Low-biomass effluent experiments showed changes in molecular size of TPA concomitant with oxygen demand induced by the polymer, suggesting susceptibility of TPA to at least partial biodegradation. Low-biomass sludge experiments (SCAS, modified Sturm) yielded approximately 70% mineralization of 20 mg L−1 TPA by 28 days, suggesting that a significant portion of the polymer was labile. High-biomass sludge experiments using14C-TPA at 1 mg L−1 revealed approximately 30% mineralization and 95% total removal of TPA carbon from solution in 23 days, with most of the mineralization and removal taking place in less than 5 days. Additional short-term studies using a variety of particulate substrates, including activated sludge, confirmed that TPA is subject to removal from solution by adsorption. From these studies with labeled TPA, it was concluded that TPA is subject to rapid removal and at least partial degradation in a wastewaster treatment plant. Using gel and thin-layer chromatography, it was determined that at least part of the unmineralized residue from the high biomass assays was polyaspartate. It is speculated that the unusual structure of TPA compared to natural proteins may limit the rate of proteolysis of the polymer and thus its overall degradation rate.


Journal of Food Protection | 2006

Lethality of Chlorine, Chlorine Dioxide, and a Commercial Produce Sanitizer to Bacillus cereus and Pseudomonas in a Liquid Detergent, on Stainless Steel, and in Biofilm

Audrey C. Kreske; Jee Hoon Ryu; Charles A. Pettigrew; Larry R. Beuchat

Many factors that are not fully understood may influence the effectiveness of sanitizer treatments for eliminating pathogens and spoilage microorganisms in food or detergent residues or in biofilms on food contact surfaces. This study was done to determine the sensitivities of Pseudomonas cells and Bacillus cereus cells and spores suspended in a liquid dishwashing detergent and inoculated onto the surface of stainless steel to treatment with chlorine, chlorine dioxide, and a commercial produce sanitizer (Fit). Cells and spores were incubated in a liquid dishwashing detergent for 16 to 18 h before treatment with sanitizers. At 50 microg/ml, chlorine dioxide killed a significantly higher number of Pseudomonas cells (3.82 log CFU/ml) than did chlorine (a reduction of 1.34 log CFU/ml). Stainless steel coupons were spot inoculated with Pseudomonas cells and B. cereus cells and spores, with water and 5% horse serum as carriers. Chlorine was more effective than chlorine dioxide in killing cells and spores of B. cereus suspended in horse serum. B. cereus biofilm on stainless steel coupons that were treated with chlorine dioxide or chlorine at 200 microg/ml had total population reductions (vegetative cells plus spores) of > or = 4.42 log CFU per coupon; the number of spores was reduced by > or = 3.80 log CFU per coupon. Fit (0.5%) was ineffective for killing spot-inoculated B. cereus and B. cereus in biofilm, but treatment with mixtures of Fit and chlorine dioxide caused greater reductions than did treatment with chlorine dioxide alone. In contrast, when chlorine was combined with Fit, the lethality of chlorine was completely lost. This study provides information on the survival and sanitizer sensitivity of Pseudomonas and B. cereus in a liquid dishwashing detergent, on the surface of stainless steel, and in a biofilm. This information will be useful for developing more effective strategies for cleaning and sanitizing contact surfaces in food preparation and processing environments.


Waste Management & Research | 2011

Sources of microbial pathogens in municipal solid waste landfills in the United States of America

Charles P. Gerba; Akrum H. Tamimi; Charles A. Pettigrew; Anne V. Weisbrod; Vijay Rajagopalan

Municipal solid waste (MSW) categories, as specified by United States Environmental Protection Agency (US EPA), were evaluated for their relative contribution of pathogenic viruses, bacteria, and protozoan parasites into MSW landfills from 1960 to 2007. The purpose of this study was to identify trends and quantify the potential contribution of pathogens in MSW as an aid to the assessment of potential public health risks. A review of the literature was conducted to estimate values for the concentrations of faecal indicator bacteria and pathogens in the major categories of MSW. The major sources of MSW contributing enteric pathogens were food waste, pet faeces, absorbent products, and biosolids. During the last 47 years, recycling of glass, metals, plastic, paper and some organic wastes in MSW has increased, resulting in a decreased proportion of these materials in the total landfilled MSW. The relative proportion of remaining waste materials has increased; several of these waste categories contain pathogens. For all potential sources, food waste contributes the greatest number of faecal coliforms (80.62%). The largest contribution of salmonellae (97.27%), human enteroviruses (94.88%) and protozoan parasites (97%) are expected to come from pet faeces. Biosolids from wastewater treatment sludge contribute the greatest number of human noroviruses (99.94%). By comparison, absorbent hygiene products do not appear to contribute significantly to overall pathogen loading for any group of pathogens. This is largely due to the relatively low volume of these pathogen sources in MSW, compared, for example, with food waste at almost 40% of total MSW.


Applied and Environmental Microbiology | 2018

Efficacy of Silver Dihydrogen Citrate and Steam Vapor against a Human Norovirus Surrogate, Feline Calicivirus, in Suspension, on Glass, and on Carpet

David Buckley; Muthu Dharmasena; Angela Fraser; Charles A. Pettigrew; Jeffery Anderson; Xiuping Jiang

ABSTRACT Carpets and other soft surfaces have been associated with prolonged and reoccurring human norovirus (HuNoV) outbreaks. Environmental hygiene programs are important to prevent and control HuNoV outbreaks. Despite our knowledge of HuNoV transmission via soft surfaces, no commercially available disinfectants have been evaluated on carpets. Our aim was to adapt a current standardized method for virucidal testing by assessing two disinfection technologies, silver dihydrogen citrate (SDC) and steam vapor, against one HuNoV surrogate, feline calicivirus (FCV), on wool and nylon carpets. First, we evaluated the effect of both technologies on the appearance of carpet. Next, we evaluated the efficacy of SDC in suspension and the efficacy of SDC and steam vapor against FCV on a glass surface, each with and without serum. Lastly, we tested both technologies on two types of carpet, wool and nylon. Both carpets exhibited no obvious color changes; however, SDC treatments left a residue while steam vapor left minor abrasions to fibers. SDC in suspension and on glass reduced FCV by 4.65 log10 and >4.66 log10 PFU, respectively, but demonstrated reduced efficacy in the presence of serum. However, SDC was only efficacious against FCV on nylon (3.62-log10 PFU reduction) and not wool (1.82-log10 PFU reduction). Steam vapor reduced FCV by >4.93 log10 PFU on glass in 10 s and >3.68 log10 PFU on wool and nylon carpet carriers in 90 s. There was a limited reduction of FCV RNA under both treatments compared to that of infectivity assays, but RNA reductions were higher in samples that contained serum. IMPORTANCE Human noroviruses (HuNoV) account for ca. 20% of all diarrheal cases worldwide. Disease symptoms may include diarrhea and vomit, with both known to contribute to transmission. The prevention and control of HuNoV are difficult because they are environmentally resilient and resistant to many disinfectants. Several field studies have linked both hard and soft surfaces to HuNoV outbreaks. However, many disinfectants efficacious against HuNoV surrogates are recommended for hard surfaces, but no commercially available products have demonstrated efficacy against these surrogates on soft surfaces. Our research objectives were to evaluate liquid and steam-based technologies in suspension and on hard surface carriers in addition to adapting and testing a protocol for assessing the virucidal effects of disinfection technologies on carpet carriers. These results will inform both the government and industry regarding a standard method for evaluating the virucidal effects of disinfectants on carpet while demonstrating their efficacy relative to suspension and hard-surface tests.


Applied and Environmental Microbiology | 1994

Effects of DNA Polymer Length on Its Adsorption to Soils

Andrew Ogram; Mark L. Mathot; James B. Harsh; Jeffrey S. Boyle; Charles A. Pettigrew


Journal of Industrial Microbiology & Biotechnology | 2005

Lethality of chlorine, chlorine dioxide, and a commercial fruit and vegetable sanitizer to vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis

Larry R. Beuchat; Charles A. Pettigrew; Mario Elmen Tremblay; Brian Joseph Roselle; Alan J. Scouten

Collaboration


Dive into the Charles A. Pettigrew's collaboration.

Researchain Logo
Decentralizing Knowledge