Charles-Alban Deledalle
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles-Alban Deledalle.
IEEE Transactions on Image Processing | 2009
Charles-Alban Deledalle; Loïc Denis; Florence Tupin
Image denoising is an important problem in image processing since noise may interfere with visual or automatic interpretation. This paper presents a new approach for image denoising in the case of a known uncorrelated noise model. The proposed filter is an extension of the nonlocal means (NL means) algorithm introduced by Buades, which performs a weighted average of the values of similar pixels. Pixel similarity is defined in NL means as the Euclidean distance between patches (rectangular windows centered on each two pixels). In this paper, a more general and statistically grounded similarity criterion is proposed which depends on the noise distribution model. The denoising process is expressed as a weighted maximum likelihood estimation problem where the weights are derived in a data-driven way. These weights can be iteratively refined based on both the similarity between noisy patches and the similarity of patches extracted from the previous estimate. We show that this iterative process noticeably improves the denoising performance, especially in the case of low signal-to-noise ratio images such as synthetic aperture radar (SAR) images. Numerical experiments illustrate that the technique can be successfully applied to the classical case of additive Gaussian noise but also to cases such as multiplicative speckle noise. The proposed denoising technique seems to improve on the state of the art performance in that latter case.
Journal of Mathematical Imaging and Vision | 2012
Charles-Alban Deledalle; Vincent Duval; Joseph Salmon
We propose in this paper an extension of the Non-Local Means (NL-Means) denoising algorithm. The idea is to replace the usual square patches used to compare pixel neighborhoods with various shapes that can take advantage of the local geometry of the image. We provide a fast algorithm to compute the NL-Means with arbitrary shapes thanks to the Fast Fourier Transform. We then consider local combinations of the estimators associated with various shapes by using Stein’s Unbiased Risk Estimate (SURE). Experimental results show that this algorithm improve the standard NL-Means performance and is close to state-of-the-art methods, both in terms of visual quality and numerical results. Moreover, common visual artifacts usually observed by denoising with NL-Means are reduced or suppressed thanks to our approach.
IEEE Transactions on Geoscience and Remote Sensing | 2015
Charles-Alban Deledalle; Loïc Denis; Florence Tupin; Andreas Reigber; Marc Jäger
Speckle noise is an inherent problem in coherent imaging systems such as synthetic aperture radar. It creates strong intensity fluctuations and hampers the analysis of images and the estimation of local radiometric, polarimetric, or interferometric properties. Synthetic aperture radar (SAR) processing chains thus often include a multilooking (i.e., averaging) filter for speckle reduction, at the expense of a strong resolution loss. Preservation of point-like and fine structures and textures requires to adapt locally the estimation. Nonlocal (NL)-means successfully adapt smoothing by deriving data-driven weights from the similarity between small image patches. The generalization of nonlocal approaches offers a flexible framework for resolution-preserving speckle reduction. We describe a general method, i.e., NL-SAR, that builds extended nonlocal neighborhoods for denoising amplitude, polarimetric, and/or interferometric SAR images. These neighborhoods are defined on the basis of pixel similarity as evaluated by multichannel comparison of patches. Several nonlocal estimations are performed, and the best one is locally selected to form a single restored image with good preservation of radar structures and discontinuities. The proposed method is fully automatic and handles single and multilook images, with or without interferometric or polarimetric channels. Efficient speckle reduction with very good resolution preservation is demonstrated both on numerical experiments using simulated data, airborne, and spaceborne radar images. The source code of a parallel implementation of NL-SAR is released with this paper.
IEEE Transactions on Geoscience and Remote Sensing | 2011
Charles-Alban Deledalle; Loïc Denis; Florence Tupin
Interferometric synthetic aperture radar (SAR) data provide reflectivity, interferometric phase, and coherence images, which are paramount to scene interpretation or low-level processing tasks such as segmentation and 3-D reconstruction. These images are estimated in practice from a Hermitian product on local windows. These windows lead to biases and resolution losses due to the local heterogeneity caused by edges and textures. This paper proposes a nonlocal approach for the joint estimation of the reflectivity, the interferometric phase, and the coherence images from an interferometric pair of coregistered single-look complex (SLC) SAR images. Nonlocal techniques are known to efficiently reduce noise while preserving structures by performing the weighted averaging of similar pixels. Two pixels are considered similar if the surrounding image patches are “resembling.” Patch similarity is usually defined as the Euclidean distance between the vectors of graylevels. In this paper, a statistically grounded patch-similarity criterion suitable to SLC images is derived. A weighted maximum likelihood estimation of the SAR interferogram is then computed with weights derived in a data-driven way. Weights are defined from the intensity and interferometric phase and are iteratively refined based both on the similarity between noisy patches and on the similarity of patches from the previous estimate. The efficiency of this new interferogram construction technique is illustrated both qualitatively and quantitatively on synthetic and true data.
International Journal of Computer Vision | 2012
Charles-Alban Deledalle; Loïc Denis; Florence Tupin
Many tasks in computer vision require to match image parts. While higher-level methods consider image features such as edges or robust descriptors, low-level approaches (so-called image-based) compare groups of pixels (patches) and provide dense matching. Patch similarity is a key ingredient to many techniques for image registration, stereo-vision, change detection or denoising. Recent progress in natural image modeling also makes intensive use of patch comparison.A fundamental difficulty when comparing two patches from “real” data is to decide whether the differences should be ascribed to noise or intrinsic dissimilarity. Gaussian noise assumption leads to the classical definition of patch similarity based on the squared differences of intensities. For the case where noise departs from the Gaussian distribution, several similarity criteria have been proposed in the literature of image processing, detection theory and machine learning.By expressing patch (dis)similarity as a detection test under a given noise model, we introduce these criteria with a new one and discuss their properties. We then assess their performance for different tasks: patch discrimination, image denoising, stereo-matching and motion-tracking under gamma and Poisson noises. The proposed criterion based on the generalized likelihood ratio is shown to be both easy to derive and powerful in these diverse applications.
international conference on image processing | 2010
Charles-Alban Deledalle; Florence Tupin; Loïc Denis
An extension of the non local (NL) means is proposed for images damaged by Poisson noise. The proposed method is guided by the noisy image and a pre-filtered image and is adapted to the statistics of Poisson noise. The influence of both images can be tuned using two filtering parameters. We propose an automatic setting to select these parameters based on the minimization of the estimated risk (mean square error). This selection uses an estimator of the MSE for NL means with Poisson noise and Newtons method to find the optimal parameters in few iterations.
IEEE Signal Processing Magazine | 2014
Charles-Alban Deledalle; Loïc Denis; Giovanni Poggi; Florence Tupin; Luisa Verdoliva
Most current synthetic aperture radar (SAR) systems offer high-resolution images featuring polarimetric, interferometric, multifrequency, multiangle, or multidate information. SAR images, however, suffer from strong fluctuations due to the speckle phenomenon inherent to coherent imagery. Hence, all derived parameters display strong signal-dependent variance, preventing the full exploitation of such a wealth of information. Even with the abundance of despeckling techniques proposed over the last three decades, there is still a pressing need for new methods that can handle this variety of SAR products and efficiently eliminate speckle without sacrificing the spatial resolution. Recently, patch-based filtering has emerged as a highly successful concept in image processing. By exploiting the redundancy between similar patches, it succeeds in suppressing most of the noise with good preservation of texture and thin structures. Extensions of patch-based methods to speckle reduction and joint exploitation of multichannel SAR images (interferometric, polarimetric, or PolInSAR data) have led to the best denoising performance in radar imaging to date. We give a comprehensive survey of patch-based nonlocal filtering of SAR images, focusing on the two main ingredients of the methods: measuring patch similarity and estimating the parameters of interest from a collection of similar patches.
british machine vision conference | 2011
Charles-Alban Deledalle; Joseph Salmon; Arnak S. Dalalyan
In recent years, overcomplete dictionaries combined with sparse learning techniques became extremely popular in computer vision. While their usefulness is undeniable, the improvement they provide in specific tasks of computer vision is still poorly understood. The aim of the present work is to demonstrate that for the task of image denoising, nearly state-of-the-art results can be achieved using orthogonal dictionaries only, provided that they are learned directly from the noisy image. To this end, we introduce three patchbased denoising algorithms which perform hard thresholding on the coefficients of the patches in image-specific orthogonal dictionaries. The algorithms differ by the methodology of learning the dictionary: local PCA, hierarchical PCA and global PCA.We carry out a comprehensive empirical evaluation of the performance of these algorithms in terms of accuracy and running times. The results reveal that, despite its simplicity, PCA-based denoising appears to be competitive with the state-of-the-art denoising algorithms, especially for large images and moderate signal-to-noise ratios.
IEEE Transactions on Image Processing | 2014
Camille Sutour; Charles-Alban Deledalle; Jean-François Aujol
Image denoising is a central problem in image processing and it is often a necessary step prior to higher level analysis such as segmentation, reconstruction, or super-resolution. The nonlocal means (NL-means) perform denoising by exploiting the natural redundancy of patterns inside an image; they perform a weighted average of pixels whose neighborhoods (patches) are close to each other. This reduces significantly the noise while preserving most of the image content. While it performs well on flat areas and textures, it suffers from two opposite drawbacks: it might over-smooth low-contrasted areas or leave a residual noise around edges and singular structures. Denoising can also be performed by total variation minimization-the Rudin, Osher and Fatemi model-which leads to restore regular images, but it is prone to over-smooth textures, staircasing effects, and contrast losses. We introduce in this paper a variational approach that corrects the over-smoothing and reduces the residual noise of the NL-means by adaptively regularizing nonlocal methods with the total variation. The proposed regularized NL-means algorithm combines these methods and reduces both of their respective defaults by minimizing an adaptive total variation with a nonlocal data fidelity term. Besides, this model adapts to different noise statistics and a fast solution can be obtained in the general case of the exponential family. We develop this model for image denoising and we adapt it to video denoising with 3D patches.
Siam Journal on Imaging Sciences | 2014
Charles-Alban Deledalle; Samuel Vaiter; Jalal M. Fadili; Gabriel Peyré
Algorithms to solve variational regularization of ill-posed inverse problems usually involve operators that depend on a collection of continuous parameters. When these operators enjoy some (local) regularity, these parameters can be selected using the so-called Stein Unbiased Risk Estimate (SURE). While this selection is usually performed by exhaustive search, we address in this work the problem of using the SURE to efficiently optimize for a collection of continuous parameters of the model. When considering non-smooth regularizers, such as the popular l1-norm corresponding to soft-thresholding mapping, the SURE is a discontinuous function of the parameters preventing the use of gradient descent optimization techniques. Instead, we focus on an approximation of the SURE based on finite differences as proposed in (Ramani et al., 2008). Under mild assumptions on the estimation mapping, we show that this approximation is a weakly differentiable function of the parameters and its weak gradient, coined the Stein Unbiased GrAdient estimator of the Risk (SUGAR), provides an asymptotically (with respect to the data dimension) unbiased estimate of the gradient of the risk. Moreover, in the particular case of soft-thresholding, the SUGAR is proved to be also a consistent estimator. The SUGAR can then be used as a basis to perform a quasi-Newton optimization. The computation of the SUGAR relies on the closed-form (weak) differentiation of the non-smooth function. We provide its expression for a large class of iterative proximal splitting methods and apply our strategy to regularizations involving non-smooth convex structured penalties. Illustrations on various image restoration and matrix completion problems are given.