Charles D. Kato
Makerere University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles D. Kato.
PLOS Neglected Tropical Diseases | 2015
Charles D. Kato; Vincent P. Alibu; Ann Nanteza; Claire M. Mugasa; Enock Matovu
Background Sleeping sickness due to Trypanosoma brucei rhodesiense has a wide spectrum of clinical presentations coupled with differences in disease progression and severity across East and Southern Africa. The disease progresses from an early (hemo-lymphatic) stage to the late (meningoencephalitic) stage characterized by presence of parasites in the central nervous system. We hypothesized that disease progression and severity of the neurological response is modulated by cytokines. Methods A total of 55 sleeping sickness cases and 41 healthy controls were recruited passively at Lwala hospital, in Northern Uganda. A panel of six cytokines (IFN-γ, IL1-β, TNF-α, IL-6, TGF-β and IL-10) were assayed from paired plasma and cerebrospinal fluid (CSF) samples. Cytokine concentrations were analyzed in relation to disease progression, clinical presentation and severity of neurological responses. Results Median plasma levels (pg/ml) of IFN-γ (46.3), IL-6 (61.7), TGF-β (8755) and IL-10 (256.6) were significantly higher in cases compared to controls (p< 0.0001). When early stage and late stage CSF cytokines were compared, IL-10 and IL-6 were up regulated in late stage patients and were associated with a reduction in tremors and cranioneuropathy. IL-10 had a higher staging accuracy with a sensitivity of 85.7% (95% CI, 63.7%-97%) and a specificity of 100% (95% CI, 39.8%-100%) while for IL-6, a specificity of 100% (95% CI, 47.8%-100%) gave a sensitivity of 83.3% (95% CI, 62.2%-95.3%). Conclusion Our study demonstrates the role of host inflammatory cytokines in modulating the progression and severity of neurological responses in sleeping sickness. We demonstrate here an up-regulation of IL-6 and IL-10 during the late stage with a potential as adjunct stage biomarkers. Given that both cytokines could potentially be elevated by other CNS infections, our findings should be further validated in a large cohort of patients including those with other inflammatory diseases such as cerebral malaria.
PLOS ONE | 2015
Charles D. Kato; Ann Nanteza; Claire M. Mugasa; Andrew Edyelu; Enock Matovu; Vincent P. Alibu
Background The acute form of Human African Trypanosomiasis (HAT, also known as Sleeping sickness) caused by Trypanosoma brucei rhodesiense has been shown to have a wide spectrum of focus specific clinical presentation and severity in East and Southern Africa. Indeed HAT occurs in regions endemic for other tropical diseases, however data on how these co-morbidities might complicate the clinical picture and affect disease outcome remains largely scanty. We here describe the clinical presentation, presence of co-infections, and how the latter impact on HAT prognosis. Methods and Findings We carried out a retrospective analysis of clinical data from 258 sleeping sickness patients reporting to Lwala hospital between 2005 and 2012. The mean patient age was 28.6 years with a significant number of cases below 18 years (p< 0.0001). About 93.4% of the cases were diagnosed as late stage (p< 0.0001). The case fatality rate was 10.5% with post treatment reactive encephalopathys reported in 7.9% of the cases, of whom 36.8% eventually died. Fever was significantly (p = 0.045) higher in patients under 18 years. Of the early stage patients, 26.7% and 6.7% presented with late stage signs of sleep disorder and mental confusion respectively. Among the co-infections, malaria was significantly more prevalent (28.9%; p< 0.0001) followed by urinary tract infections (4.2%). Co-infections were present in 14.3% of in-hospital deaths, 38.5% of which were recorded as Malaria. Malaria was significantly more common in patients under 18 years (45.5%; p< 0.02), and was reported in 60% of the fatal cases in this age group. Conclusions We show a wide spectrum of sleeping sickness clinical presentation and disease outcome that was apparently not significantly influenced by concurrent infections. It would thus be interesting to determine the host and/or parasite factors that might be responsible for the observed diverse clinical presentation.
Infectious Diseases of Poverty | 2016
Celsus Sente; Joseph Erume; Irene Naigaga; Julius Mulindwa; Sylvester Ochwo; Phillip Kimuda Magambo; Benigna Gabriela Namara; Charles D. Kato; George Sebyatika; Kevin Muwonge; Michael Ocaido
BackgroundPathogenic water dwelling protozoa such as Acanthamoeba spp., Hartmannella spp., Naegleria spp., Cryptosporidium spp. and Giardia spp. are often responsible for devastating illnesses especially in children and immunocompromised individuals, yet their presence and prevalence in certain environment in sub-Saharan Africa is still unknown to most researchers, public health officials and medical practitioners. The objective of this study was to establish the presence and prevalence of pathogenic free-living amoeba (FLA), Cryptosporidium and Giardia in Queen Elizabeth Protected Area (QEPA).MethodsSamples were collected from communal taps and natural water sites in QEPA. Physical water parameters were measured in situ. The samples were processed to detect the presence of FLA trophozoites by xenic cultivation, Cryptosporidium oocysts by Ziehl-Neelsen stain and Giardia cysts by Zinc Sulphate floatation technique. Parasites were observed microscopically, identified, counted and recorded. For FLA, genomic DNA was extracted for amplification and sequencing.ResultsBoth natural and tap water sources were contaminated with FLA, Cryptosporidium spp. and Giardia spp. All protozoan parasites were more abundant in the colder rainy season except for Harmannella spp. and Naegleria spp. which occurred more in the warmer months. The prevalence of all parasites was higher in tap water than in natural water samples. There was a strong negative correlation between the presence of Acanthamoeba spp., Hartmannella spp., Cryptosporidium spp. and Giardia spp. with Dissolved Oxygen (DO) (P < 0.05). The presence of Cryptosporidium spp. showed a significant positive correlation (P < 0.05) with conductivity, pH and Total Dissolved Solids (TDS); whereas the presence of Giardia spp. had only a strong positive correlation with TDS. Molecular genotyping of FLA produced 7 Acanthamoeba, 5 Echinamoeba, 2 Hartmannella, 1 Bodomorpha, 1 Nuclearia and 1 Cercomonas partial sequences.ConclusionsAll water collection sites were found to be contaminated with pathogenic protozoa that could possibly be the cause of a number of silent morbidities and mortalities among rural households in QEPA. This implies that water used by communities in QEPA is of poor quality and predisposes them to a variety of protozoan infections including the FLA whose public health importance was never reported, thus necessitating adoption of proper water safety measures.
Allergy, Asthma & Clinical Immunology | 2016
Charles D. Kato; Enock Matovu; Claire M. Mugasa; Ann Nanteza; Vincent P. Alibu
Human African trypanosomiasis due to Trypanosoma brucei rhodesiense is invariably fatal if untreated with up to 12.3 million people at a risk of developing the disease in Sub-Saharan Africa. The disease is characterized by a wide spectrum of clinical presentation coupled with differences in disease progression and severity. While the factors determining this varied response have not been clearly characterized, inflammatory cytokines have been partially implicated as key players. In this review, we consolidate available literature on the role of specific cytokines in the pathogenesis of T. b. rhodesiense sleeping sickness and further discuss their potential as stage biomarkers. Such information would guide upcoming research on the immunology of sleeping sickness and further assist in the selection and evaluation of cytokines as disease stage or diagnostic biomarkers.
New Journal of Science | 2016
Celsus Sente; Joseph Erume; Irene Naigaga; Benigna Gabriela Namara; Julius Mulindwa; Sylvester Ochwo; Phillip Kimuda Magambo; Charles D. Kato; Andrew Tamale; Michael Ocaido
Studies on waterborne parasites from natural environment and domestic water sources in Uganda are very scarce and unpublished. Water dwelling free-living amoebae (FLA) of the genus Acanthamoeba, Hartmannella, and Naegleria are often responsible for causing morbidities and mortalities in individuals with recent contact with contaminated water, but their presence in Uganda’s public water supply sources is not known. We cultivated and genotyped FLA from natural and domestic water from Queen Elizabeth Protected Area (QEPA) and Kampala (KLA). The cultivated parasites were observed microscopically and recorded. The overall prevalence of FLA in QEPA (Acanthamoeba spp., 35%; Hartmannella spp., 18.9%; Naegleria spp., 13.5%) and KLA (Acanthamoeba spp., 28.3%; Naegleria spp., 16.6%; Hartmannella spp., 23.1%) were not significantly different. The highest prevalence across water sources in QEPA and KLA was observed for Acanthamoeba spp., followed by Hartmannella spp., and Naegleria spp. Overall FLA mean (±SE) and mean (±SE) across water sources were highest for Acanthamoeba spp. compared to other FLA but were not statistically significant ( > 0.05). Analysis of the FLA sequences produced 1 Cercomonas, 1 Nuclearia, 1 Bodomorpha, 2 Hartmannella, 5 Echinamoeba, and 7 Acanthamoeba partial sequences, indicating a muliplicity of water contaminants that need to be controlled by proper water treatment.
Parasites & Vectors | 2016
Charles D. Kato; Vincent P. Alibu; Ann Nanteza; Claire M. Mugasa; Enock Matovu
Parasites & Vectors | 2016
Celsus Sente; Joseph Erume; Irene Naigaga; Phillip Kimuda Magambo; Sylvester Ochwo; Julius Mulindwa; Benigna Gabriella Namara; Charles D. Kato; George Sebyatika; Kevin Muwonge; Michael Ocaido
Parasites & Vectors | 2018
Freddie Kansiime; Seraphine Adibaku; Charles Wamboga; Franklin Idi; Charles D. Kato; Lawrence Yamuah; Michel Vaillant; Deborah Kioy; Piero Olliaro; Enock Matovu
BMC Research Notes | 2017
Charles D. Kato; Claire M. Mugasa; Ann Nanteza; Enock Matovu; Vincent P. Alibu
Thyroid Research | 2018
Jackline Namulema; Miriam Nansunga; Charles D. Kato; Muhammudu Kalange; Samuel Babafemi Olaleye